NOTICE:

The Arnor products for the Amstrad CPC and Amstrad PCW are © Copyright 1997-2003 Brian
Watson. All rights reserved.

For support and printed manuals for these products please contact Brian at:

Brian Watson,
"Number Six",
Windmill Walk,
Sutton,

ELY

Cambs

CB6 2NH
ENGLAND

or

brian@spheroid.demon.co.uk

This manual has been reproduced with his permission.

Manual scanned by Paul Collins.
OCRed by Kevin Thacker.
Many thanksto Brian Watson for his help with this manual.

UTOPIA

16k Utilities ROM
(C) ARNOR LTD 1985

AMSTRAD CPC464
CPC664 & CPC6128

UTOPI A
16K UTI LI TI ES ROM
AMSTRAD CPC464 CPC664 & CPC6128
I ntroduction

UTOPI A is a collection of useful commands relating to nmany aspects of Anstrad
conputing. Although sold as a single product. UTOPIA is really a '"library' of
prograns, all contained on a single ROMchip for convenience. Just like a library of
books, UTOPI A's commands can be cl assified by subject:

1. Commands useful to BASIC programmers. These include find and replace, nove
l'ines, and various commands displ ayi ng useful information such as the currently
defined vari abl es.

2. Commands relating to files on tape or disc, such as TYPE, DUWP, VERIFY and
COPY.

3. Disc users utilities. Al the essential facilities for the disc user are
contained in the ROM Wth UTOPIA installed there is no | onger any need to use your
CP/M disc to format or copy a disc.

4. Commands relating to sideways ROMS and external conmands. These allow all
si deways ROMs and all external commands to be listed and al so the switching off of
sel ected ROMEs.

5. Conmands to echo all screen output to either the printer or a file.

Copyright (c) Arnor Ltd., 1985

CP/Mis a registered trademark of Digital Research Inc.
AMSTRAD is a registered trademark of Amstrad Consuner Electronic, plc.

Al'l rights reserved. It is illegal to reproduce or transmt either this manual or the
acconpanyi ng conputer programin any formw thout the witten perm ssion of the
copyright holder. Software piracy is theft.

The UTOPI A program was devel oped using the MAXAM assenbl er ROM

Thi s manual was printed from canmera-ready copy witten on the PROTEXT word processor
and printed on a KAGA- TAXAN printer.

MAXAM and PROTEXT are both available in ROM from Arnor.

Arnor Ltd., The Studio. Ledbury Place. Croydon CRO 1ET. 01-688-6223

I NSTALLATI ON

UTOPI A is supplied in a 16K EPROM whi ch can be fitted into any avail abl e ROM expansi on
board. You may find that the legs of the EPROMwi Il need straightening a little in
order to fit it. Do this with extreme care by holding the EPROMin the centre (avoid
touching the legs) and pressing the side of the | egs against a flat surface. Keep the
EPROM away from sources of electrostatic charge such as the nonitor screen.

ROM number s

Each ROM when installed nmust have a uni que ROM sel ect nunber so that the firmware

may access it. UTOPIA is a background ROM which neans it provides facilities that can
be used by other ROMs, such as BASIC. The nunber associated with a background ROM nust
lie between 1 and 15 (with the 1.0 firmvare as on the CPC464 it nust be between 1 and
7). However UTOPIA rmust be installed with a select nunber between 1 and 6. This is
because AMSDOS occupies ROM 7, and UTOPI A nust have a | ower nunmber in order to
intercept sone of the AMSDOS commands. It you have the Arnor AD-1 adaptor wth NMAXAM
or PROTEXT that will take ROM 5. Sel ect one of the remaining nunbers for UTOPIA - this
wi I | be done by choosing an appropriate socket and, possibly, fitting a link. Refer to
the docunentation acconmpanyi ng your ROM board for details.
When your UTOPIA ROMis installed, switch on and type '|HELP'. This will list all
ROVs. If UTOPIA is listed then all is well and all the cormands are ready for use. If
not, or if the nessage 'Unknown command' is displayed, check that you have not chosen
a ROM sel ect nunber already occupied by sonmething el se.

USI NG UTOPI A
Command entry

UTOPIA's facilities are all available from BASIC, MAXAM or PROTEXT as 'external
comands' . They can also be used with other well-witten conmercial ROM. The commands
are entered by typing a vertical bar ‘|’ followed by the conmand nane.

Mbst of the commands take one or nore paraneters (such as filenane, string to find).
These parameters can be entered in one of two ways:

(i) after the command name separated by commas,
(ii) by pressing ENTER (or RETURN) after the command nane, in which case UTOPI A
will pronpt for all required paraneters.

Method (ii) allows a command to be used if you've forgotten what paraneters it takes.
The other advantage is that it allows the entry or string paraneters easily from
BASIC. Method (i) Can be very quick and convenient, especially if used with MAXAM or
PROTEXT which allow free format entry of external commands.

The HELP conmmand can be used to list all UTOPIA's commands on the screen. '| HELP
lists all sideways ROMVs, including UTOPI A, together with their 'ROM nunbers'. Then
"| HELP,n" where n is UTOPIA's ROM nunber will list all the external commands that are
avai |l abl e. HELP al so di splays the UTOPI A versi on nunber, which should be quoted in any
correspondence.

If you have ROVs produced by different conpanies you may find that there to a
conflict of command nanmes. Where two or nore ROVs each have a command with the sane
nane, the command in the |ower nunbered ROM will normally take priority. UTOPIA
includes a feature to override this if another ROMto intercepting a command neant for
UTOPI A. To do this type the conmand |U. You will than be asked for the nanme, after
whi ch the command will be executed as nornal.

As far as possible UTOPIA follows BASIC in the use of the ESC key. So for virtually
al | commands, pressing ESC once causes the command to pause and a second press aborts
the command (another key resunes it). However when conmmands are accessing the disc the
conput er does not scan the keyboard so it nmay be necessary to hold the ESC key down
for about half a second.

Fi |l enanmes

If a filename is entered without an extension, the AMSDOS convention is followed -
if the file is not found the suffix .BAS is added. If this is not found the suffix BIN
is tried. This applies to the follow ng conmands:

ACCESS COPY DELETE DUMP | NFO LI ST LOAD TYPE VERI FY VTEXT

It does not apply to ERA and REN, these work exactly as the AMSDOS conmand and are
merely intercepted to allow easy paraneter entry from BASIC.

The command SAVE creates a file with a .BIN suffix if none is given.

Ambi guous fil enanes

Many commands al | ow t he use of anbi guous fil enames. An anbi guous fil enane contains
one or nore wildcard characters. The wildcard characters are:

? ... this will match any single character in a filenane

* ... this will match any string of characters in a filenane.
Exanpl es of use of wildcards:

** all files.

*. BAKal | backup files.

?AT all 3 latter filenanes ending in AT (e.g CAT, MAT).

Function keys

UTOPI A is present in the machine fromthe nonent you switch on, and all the comands
are instantly accessible. In fact, by the tinme BASIC displays 'Ready' for the first
time UTOPI A has already done several things. These are:
1. It determ nes whether discs are being used. |f so the expansion string produced
by pressing CTRL and ENTER (this neans the snall ENTER key on the 464 and 664)
is changed fromRUN' to RUN'DI SC. This allows the use of an auto-boot facility
with disc. Save a BASIC programcalled 'DI SC which perfornms any required
action (e.g. running a BASIC or machine code program setting pen and paper
colours), then in future you just need to insert the disc and press CTRL- ENTER
2. Expansion tokens 150 to 159 are associated with the keys f0 to f9 (0 to 9 at
the right of the keyboard) when CTRL is pressed. Expansion token 149 is
associ ated with the full stop key at the right of the keyboard when CTRL is
pressed.
3. The expansion tokens 149 to 159 have strings assigned to them The affect of 2
and 3 is to define the followi ng function keys:

CTRL-f0 RUN
CTRL-f1 LI ST
CTRL-f2 MODE 2
CTRL-f3 | PRI NTOFF
CTRL-f 4 | HELP
CTRL-f5 | TOKENS
CTRL-f6 | PRI NTON
CTRL-f7 | PROTEXT
CTRL-f8 | MAXAM 2
CTRL-f9 CALL &BBA4E: CLS
CTRL-f. | STATUS

CALL &BB4E calls the firmware routine ' TXT INITIALI SE, which perforns the follow ng
actions: selects stream0, sets text paper to ink 0, sets text pen to ink 1, sets the
text window to the entire screen, sets the character witing node to opaque, enables
VDU, turns off the graphic character wite node, noves the cursor to top left, cancels
user defined character definitions. Thus CTRL-f9 can be used to reset nany aspects of
the text VDU - often useful after a program has gone wong and |left the display in an
unusabl e state.

CTRL-f7 and CTRL-f8 are only of use to owner of the PROTEXT word processor and the
MAXAM assenbl er respectively. Both of these acclained prograns are avail able in ROM
from Arnor.

THE COMMANDS | N DETAI L

The major part of this manual details each command, in al phabetical order. The
followi ng headings are used, though they are not all used in every case:

1.

<>:

Syntax: The paraneters required by the conmmand are |listed on one |line - but
don't forget you can just press ENTER (or RETURN) after the name to obtain self
expl anatory pronpts for all paraneters. The follow ng conventions and
abbreviations are used in the syntax descriptions:

an itemenclosed in angle brackets is a description of the parameter. O her

letters etc, should be typed literally as shown.

():
2.
3.
4.

an item enclosed in parentheses is optional.

Description: The use and effect of the command expl ai ned.

Exanpl es: Exanples illustrating the use of the cormand and the output produced
by the commmand.

Technical notes: These notes are included for those who are interested. They
are concerned with how the conmand works rather than how to use the conmmand.
They may therefore assume certain know edge about the workings of the Arstrad
conputer. Don't worry though - they can be safely ignored.

Rel at ed conmands: A |list of conmands that are either used in association with
the command just described, or whose description throws sone light on its use.

Access - Set access attributes (disc only)
Synt ax: ACCESS <anbi guous fil ename> (p)

Every file stored on disc has an ‘access attribute’. This sinply says whether the
file is protected against alteration or deletion. Wen a file is created its access
attribute is 'Read/ Wite'; that is it is not protected. The file can be protected by
usi ng the ACCESS conmand wi th parameter ‘P . This sets the file to 'Read-Only'. In
order to save a new file or delete the file, first use ACCESS wi thout the paraneter
"P'. Protected files are marked in the catal ogue with an asterisk.

Exanpl es:
1. | ACCESS, "myprog", " P”
Sets file 'myprog' to Read-Only
2. | ACCESS, "*.BAS", "P"
Set all BASIC programfiles to Read-Only.
3. | ACCESS, "*. *"
Set all files to Read/Wite.

Techni cal note:
| ACCESS <file> P is equivalent to CP/Ms 'STAT <file> $R/ O .
| Access <file>" is equivalent to 'STAT <file> $R/IW.

Rel at ed conmands: CAT, COPY, DELETE

Arrays - List currently defined arrays
Synt ax: ARRAYS

A conplete list of all defined arrays is produced. The di nensions of each array is
given. The arrays are listed in the following order: all real arrays in the order they
were defined, all integer arrays in the order they were defined, all string arrays in
the order they were defined. The type of each array is indicated by the appropriate
type marker: ! for real, % for integer, $ for string.

Exanpl e:
| arrays
VECTOR! (9)
A$ (13, 6)

Rel at ed conmands: FNS, VARS

C - cCalculate value of expression

Syntax: C

This conmand al ways pronpts for an expression. The expression nust contain the
follow ng: integer constants expressed in decinml, hexideciml (prefixed by '&'),

bi nary (prefixed by '"%), and the operators +, -, *, /. The result is eval uated nodul o
65536, that is the two | east significant bytes of the result are displayed. The result
is displayed in two ways - in hexadeci mal and signed deci mal .

Exanpl e:

The BASIC expression evaluator is unable to cope with certain hexadeci mal
cal cul ations because it always treats integers as signed nunbers. The C conmand avoi ds
this problem

| C
Expression: &9al5-&7858
Value is: &21BD = 8637

CALL - call nachine code routine
Synt ax: CALL <address> (<a>) (<bc>) (<de>) (<hl>)

The routine at the specified address is called, using any parameters to set the
val ues of the registers A, BC, DE, HL (in that order). Sone or all of the register
val ues may be omitted, in which case those registers are set to zero. On return from
the routine the register values are displayed.

Exanpl es:

This command is useful for investigating the effect of machine code routines
(especially the firmvare routines) without the need to assenbl e any code. This is not
usual Iy possible fromBASIC because the BASIC ' CALL' command does not allow val ues to
be returned.

6. | CALL, &BBA5, 241

Returns with HL containing the address of the character matrix for the ASCI| code
241.

7. | CALL, &BD2A, 68

Returns with A containing the character or token that the TAB key is transl ated
to. (68 is the key nunmber of the TAB key).

8. | CALL, &BB87, 0, 0, 0, &908

Checks whether the position (row 8, colum 9) is in the current window, and alters
HL if it is not.

CAT - catal ogue files
Syntax: CAT (<drive>)

CAT is alnost exactly the same as the BASIC command CAT. The main advantage for disc
users is that the drive to be catal ogued nay be specified, allow ng the catal ogui ng of
drive B without altering the default drive.

Note: CAT will use the AMSDOS conmands A and B as necessary to select the required
drive, and afterwards restore the previous setting. Thus if the currently selected
drive has no disc init an error will occur, in this case press Cto cancel and note

that the default drive will have changed.
Exanpl es:
1. | CAT Cat al ogue current drive
2. | CAT,"B" Cat al ogue drive B

Techni cal note:

The BASI C conmand CAT calls CAS | N ABANDON and CAS QUT ABANDCQN, thus abandoni ng any
open tiles. This is not necessary though, so | CAT only calls CAS IN CLCSE for tape,
and does not affect either stream for disc.

COPY - copy file
Syntax: COPY (<new filename>) <old fil ename>

This will copy a file fromthe current input filing systemto the current output
filing system If <new filenane> is emtted, the new copy will be given the sane nane
as the old file. If copying fromtape both nanes may be omtted - the first file wll
then be copied. It copying fromtape to disc the nane will he truncated if it is too
long. Any type of file may be copied.

Not e: COPY cl oses any open files.

Exanpl es:

1. Copying fromtape to tape or disc using the same nane.
| TAPE. I N

| COPY

2. Copying a naned file fromdisc or tape to tape.

| TAPE. OUT

| COPY, "progfile”

3. Copying a file and renaming it

| COPY, " newnane”, "ol dnanme”

4. Copying file fromdrive Ato drive B

| COPY, "b: maxant, " a: maxant

Techni cal notes:

COPY copies the file byte by byte using CAS OUT CHAR. It is requires 2K of free
menory.

If copying onto tape the |oad address of the file will be lost. This is because the
firmvare does not permt the setting of the |oad address field in the file header.
This does not APPLY if copying onto disc because AMSDOS al l ow the | oad address field
to be set.

Rel at ed conmands: DELETE, LOAD, SAVE

DEDI T - Disc editor
Syntax: DEDIT <drive> (<track>) (<sector>)

DEDIT allows the exami nation and direct alteration of the contents of a disc. If a
sector nunber is specified, DEDIT will attenpt to read that sector. Otherwise it wll
deternmine the format of the disc and read the first sector if the required track. If
no track nunmber is given, DEDI T assunes track 0. The top line of the screen will show
the drive (A or B), the track number and the sector nunber. Sector nunbers depend on
the format of the disc but are always determ ned automatically. For reference though
they are as follows:

System or Vendor format: &41 to &49 (9 sectors per track)
Data only format: &Cl to &C9 (9 sectors per track)
I BM f ormat : 1to 9 (8 sectors per track)

Each sector is 512 bytes |long and the display shows half of a sector at a tinme in 80
col um mode. Pressing SH FT with the cursor up and down key, swaps between the two
hal ves of the sector. The left part of the screen shows the hexadeci nal representation
and the right part shows ASCI|I. Each can be edited, sinply by overtyping the displayed
val ues.

Use CTRL with the cursor keys to nove between sectors as shown bel ow.

When you have finished editing a sector you will need to wite the sector to the
disc. This is not done automatically so if the alterations are displayed on the screen
and you nove to a new sector, the disc will not be changed. To save the changes press
CTRL- COPY. The current sector as it is displayed on the screen is copied to the disc.

Corrupted discs etc.

If a read error occurs the message "Unable to read sector nove to new sector or
press ESC is displayed. This usually nmeans that DEDIT was trying to read a non-
exi stent sector - this will happen it you enter a sector nunber corresponding to a
different disc format, or it you are trying to access a protected disc. |If neither of
these are the case then you Probably have a corrupted disc. It may be that there is
just one bad sector though, in which case you can use the conmands below to nove to
anot her sector or track. Before consigning the disc to the bin, reset the machine
conpletely and try again: also try other discs in the case the drive is faulty.

DEDIT offers the foll owi ng commands:

TAB switch between hex and ASCI| editing.
SHI FT <cursor-up> move to top half of sector

SHI FT <cursor-down> nmove to bottom half of sector.

SHI FT <cursor-1left> move to start of |ine

SHI FT <cursor-right> move to end of |ine

CTRL <cursor-up> move back one track

CTRL <cursor-down> nmove on one track.

CTRL <cursor-left> move back one sector

CTRL <cursor-right> nmove on one sector.

CTRL- COPY write sector to disc.

COPY COPY sector to nenory. A nenory address will be

request ed which should be the start of a 512 byte
(&200 byte) area of menory.

ESC finish.
Exanpl es:

1. It afileis accidentally deleted it may (with the appropriate know edge of the
CP/Mfiling system) be restored using DEDIT.

2. It a disc beconmes corrupted it nay be possible to restore sone or all of a file
by copying the sectors into menory, and then using SAVE to save the recovered file
onto another disc. For exanple, if a file consists of 3 sectors and the sectors can
all he read by DEDI T, copy the sectors to &1000, &1200, &1400 and then enter the
command ' | SAVEA, "file", &1000, &00’ . |f you have MAXAM or PROTEXT you can then edit the
recovered file.

Rel at ed commands: FORMAT, MEDIT
DELETE - Delete file or files (disc only)

Synt ax: DELETE <anbi guous fil ename>

DELETE is simlar to the AMSDOS conmand ERA, the difference being that instead of
just deleting each file matching the anbi guous filenane, the filename is displayed and
the question 'Delete (y/n)? is displayed. If Y is pressed the file will be deleted,
otherwise it will not. If you realise you have made a m stake before DELETE has
finished, press ESC and no changes will be made. OQtherwise all the files you narked
for deletion will be deleted together after all filenanes have been displayed. Files
set to Read-Only, may not be del eted.

Rel at ed command: ERA

DI SCCOPY - Copy disc

Synt ax: DI SCCOPY <source drive> <destination drive>

DI SCCOPY will copy a disc using one or two drives. The question 'Are you sure
(y/n)?” will ask you to confirmthat the copying is to go ahead. If any key other than
Y is pressed the copying will not proceed. Any format of disc may be copied but the

two discs nust be of the same format.
The use of this command will overwite user nenory and any RSX that has been | oaded
fromdisc will be |ost.

Exanpl es:

1. Copying with a single drive

| DI SCCOPY, "A", "A"

2. Copying with a dual drive system
| DI SCCOPY, "A","B”

It is recommended that you al ways copy fromdrive Ato drive B and NEVER the ot her way
round, and al so that whilst copying the source disc is wite protected. If these
precautions are not followed it is alnopst inevitable that you will at sonme tine copy
t he backup disc onto the working disc!

Rel at ed commands: COPY, DI SCTEST, FORMAT

DI SCTEST - Test disc for read errors
Syntax: DI SCTEST <drive>

DI SCTEST sinply reads every sector of the disc in the specified drive. If the disc

is badly formatted or corrupted a 'Read Fail' wll occur at sone point. |If this occurs
try re-formatting the disc. |f DI SCTEST succeeds the message 'Disc formatted correctly
is displayed.

The operation of DI SCTEST is carried out autommtically by DI SCCOPY and FORMAT.

Rel at ed conmand: FORMAT

DUMP - Dunp file contents
Synt ax: DUMP <fil ename>

DUV will read a file fromtape or disc and display the contents of the file on the
screen. Both hexadeci mal and ASClI| representations are shown.

Note: DUMP closes the input file if there is one.

Techni cal note:

When used on disc DUMP treats soft end of file (&A) as a character in the file and
continues to the hard end of file that is the end of a 128 byte bl ock.

Rel at ed commands: LI ST, TYPE

ERA - Erase file or files (DISC only)
Synt ax: ERA <anmbi guous fil ename>

This is the AMSDOS conmmand and so is identical in affect and use to that described
in the Anstrad manual. The conmand is, however, intercepted and will pronpt for
parameters in the usual way, thus allow ng easy deletion of files from BASIC.

ERA will also warn you if you attenpt to delete all files, as CP/M (but not AVBDOB)
does.

Rel at ed commands: DELETE

FIND - Find tokenised string in BASIC program

Syntax: FIND <string>

The FIND command will search for any string of BASIC text in the current BASIC
program In order to use FIND to the best affect it is necessary to understand a
little about how BASIC stores prograns. It would be very sinple to search for a string
if programs were stored exactly as you type themin, but they are not. For reasons of
speed and conpactness BASIC takes the lines of programas you enter themand converts
theminto a special code. This operation is called 'tokenisation’. So for exanple if
you enter the command 'PRINT' in a program BASIC does not store the 5 letters of
‘PRINT', but instead the single nunmber (or ‘token’) &F. Sinilarly every BASI C keyword
has a token. BASIC al so stores nunmbers and variables that occur in prograns in a
speci al way.

VWat this all means is that when you enter a string to be found, it nust be
tokeni sed in exactly the sane way before begi nning the search.

The entire programis searched for the string and the Iine nunber on which it occurs
is listed.

FIND is case sensitive; that is letters typed on lower case will only match | ower
case letters in the program and capitals will only match capitals.

Not es:

FI'ND cannot be used to search for string constants because these are not tokenised.
For this, use the command FI NDA.

If the string being searched for is very short (1 or 2 characters) it nay sonetinmes
appear to find the string wongly. In fact it is finding the string in the BASIC text
where it is part of a token, such as a variable.

Rel at ed conmands: FI NDA, REPLACE

FI NDA - Find ASCI| string in BASIC program

Synt ax: FI NDA <string>

FINDA is the same as FIND in every respect but one: the string is not tokenised before
searching. So this can be used to search for itenms in REM or DATA lines, or for string
constants. Wldcards are allowed in the string. Awldcard is a character which wll
mat ch any character in the BASIC programtext. Awldcard is specified in the string
by typing a question mark ('?'). Any number of wldcards nmay be used.

FINDA is case sensitive: that is letters typed in |lower case will only match | ower

case letters in the program and capitals will only match capitals.
Exanpl e:

| FI NDA, “f?72e”
Finds all 4 character ASCI| strings staring with 'f' and and with ending with

« a0t

e .

Rel at ed commands: FI ND, REPLACEA
FNS - List currently defined functions

Syntax: FNS

The names of all functions and the line numbers in which they are defined are
listed. The type of the function is also indicated by the type narker after the nane:
! for real, %for integer, $ for string.

Note that only defined functions are listed so FNS should be used after running a
BASI C program

Exanpl e:
| fns

START! Line 1000
ENTER$ Line 1250

Rel at ed conmands: ARRAYS, VARS

FORMAT - format a disc
Synt ax: FORMAT <drive> (<format type>)

FORMAT does the same as the CP/Mutility ‘FORMAT'. The format type is a single
letter identifying one of two formats:
V: Vendor Format. This is the default, and is the sane as the System Fornmat except
that the CP/M systemtracks are |left blank. This format gives 169K per disc.
D: Data Format. This has no systemtracks and gives 178K per disc.
The default if neither V nor Dis specified is Vendor Format.

Techni cal note:
Discs are formatted in the recormmended way with 2 to 1 sector interleave.

Rel at ed commands: DI SCCOPY, DI SCTEST

HELP - list sideways ROMs or external conmands
Syntax: HELP (<rom numnber>)

HELP with no paranmeter will |ist sideways ROVs. All foreground and extensi on ROV
will be listed. Those background ROVs that have been initialised are listed (this
generally means all unless the ROMOFF conmand has been used).

The information given is ROM sel ect nunber, ROMnane, version nunber, ROMtype, and
for a background ROM the address of it’s upper workspace area.

This Information can than be used to |list the commands provi ded by any background
ROM Enter the selected nunber of the required ROM as the paraneter for HELP and al |
the commands will be |isted.

Techni cal note:

The ROM nane is taken fromthe nane of the initialisation comand, that is the first
name in the nane table. The version nunmber is taken frombytes 1 to 3 of the ROM
Commands such as the AMSDOS commands CTRL-A to CTRL-1 are not |isted.

Exanpl e:

| HELP

| HELP, n li sts conmands for ROM n
| HELPR | i sts RSX commands

ROM 0. BASIC 1.10 foreground
ROM 1: UTOPI A 1. 00 back &A2F4
ROM 2: PROTEXT 1.00 back &A3F8
ROM 5. MAXAM 1.10 back &A5FC
ROM 7: CPM ROM 0. 50 back &A700
| hel p, 5
ROM 5: MAXAM 1.10 back &A5FC
MAXAM ASSEMBLE

ASSEM CAT

CLEAR FI ND

HELP M

MAXAM MODE

MSH MSL

RAMON RAMOFF

ROMOFF SPEED

MCLEAR MFI ND

VHELP MROMOFF

Rel at ed commands: HELPR, ROMOFF

HELPR - 1ist RSX command.

Synt ax: HELPR

This lists all external comands provi ded by RSXs that have been | oaded fromtape or
disc, in the same way that HELP,n |ists external conmmands provided by background ROMs.

Rel at ed conmand: HELP

I NFO - display information about file or files

Synt ax:
I NFO (tape only)

| NFO <anmbi guous fil ename> (disc only)

The information displayed is taken fromthe file header. Wen used on tape all files
are listed, on disc all files matching the anbi guous filenanme (so, in Particular, |N-O
** will list all files on the disc). Note that ASCII files have no header and zeros
will be shown.

The information listed listed is as follows:

1. File type. The sanme characters shown by CAT on tape
* is ASCII, & binary, $ unprotected BASIC, % Protected BASIC
2. Load address. The address in nmemory to which the file will be | oaded by

defaul t.

3. Logical length. The length of the file as stored in the file header

4. Entry address. For machi ne code prograns, the address at which executionis to
begin after the file has been | oaded

5. (Disc only) Size. The actual size of the file on the disc. This is listed for
all files, whether they have a header or not. This will be different to the
| ogi cal length because the size includes the size of the header itself. The
size is a multiple of 128 bytes, the unit CP/ M handl es

All these numbers are shown in hexadeci mal .
Note: INFO closes the input file if there is one

Exanpl e:
|info,”*. *”

LOAD LOGL ENTRY SI ZE
A: DI SC . BAS $ 0170 006A 0000 0100
A: DI SC .BIN & 9000 2182 9156 2280
A. REPORT . * 0000 0000 0000 5E80

Rel at ed conmand: CAT

LIST - Iist ASCII file

Syntax: LIST

LIST will read a file fromtape or disc and |list the contents on the screen,
nunmbering the lines. Tab characters are acted upon, taking tab positions at every
ei ght h col um.

Note: LIST closest the input file if there is one.

Techni cal note:
If the file in of type ASCII, LIST stops at a soft end of file (&lA).

Rel at ed commands: DUMP, TYPE

LOAD - load a file into nenory
Syntax: LOAD <fil ename> (<l oad address>)

This LOAD command has nuch greater use than the equival ent BASI C comrand, which only
operates with binary files, and only allows files to be | oaded at an address greater
than HHMEM Here there is no restriction on either file type or address, and the
command is of particular use in MAXAM for | oading machi ne code or other files.

The file is |oaded at the specified address, or, if the address is onmitted, to the
| oad address fromthe file header. In the case of ASCI| files there is no header so an
error nessage will be given if no | oad address is specified.

The | oad address to not checked in any way, so ill-chosen addresses may cause a
system crash.

Note: LOAD closes the input file if there is one.

Exanpl es:
1. | LOAD, " bi nary”
Load file called “binary” at the address in the header.
2. | LOAD, "ascii”, &3000
Load file called “ascii” at &3000.

Rel at ed conmands: SAVE, VERIFY

MDUMP — menory dunp
Syntax: MDUWMP <start address> (<end address>)

MDUMP di spl ays the contents of menory in both hexadecimal and ASCII. If no end
address is specified it will continue to the end of menory, &FFFF. Usually MEDIT is
nmore useful for exami ning nenory contents, but MDUWP is needed in conjunction with
PRI NTON to send a menory dunp to the printer.

Exanpl e:
| MDUMP, &170

Lists the nmenory area containing the BASIC Program

Rel at ed conmands: MEDI T

MEDI T - menory editor
Syntax: MEDI T <address>

Exam nation and direct alteration of nenory contents are possible with MEDIT. Wen the
conmand is entered, the whole screen is used to display an area of nenory with the
sel ected address in the centre. Hexadecimal and ASCI| representations are shown, and
the contents may be altered sinply by overtyping what is shown on the screen. Pressing
TAB will switch between hex and ASCI| editing nodes.

MEDI T offers the foll owi ng commands:

TAB switch between hex/ASCI| editing nodes.
SHI FT <cursor-up> move to top of screen.

SHI FT <cur sor - down> move to bottom of screen.

SHI FT <cursor-left> move to start of |ine.

SHI FT <cursor-right> move to end of |ine.

CTRL <cursor-up> move back one screenful.

CTRL <cursor-down> move on one screenful.

CTRL <cursor-left> move to top left.

CTRL <cursor-right> move to bottomright.

ESC finish

Rel at ed conmands: DEDI T, NMDUMP

MOVE - nove BASIC |ines
Syntax: MOVE <first line> <last |ine> <destination |ine>

It is often useful to be able to nove a section of a BASIC program when reorgani si ng
or tidying up your program MOVE takes three paraneters, all of which are BASIC |ine
nunmbers. The first two |line numbers define the block which is to be nmoved. The line
specified need not exist: if the first nunber does not exist the block is taken to
start at the first line after that specified: if the second nunber does not exist the
bl ock is taken to end at the last |ine before that specified.

The destination line determ nes where the block is to be noved to. The block is
inserted after the line. If the line does not exist the block is inserted at the point
where the |line woul d have been.

After the block has been noved the |line nunbering will be wong because the line
nunbers are not altered. So after using MOVE it is essential to renunber the program

Exanpl e:

MOVE 200, 340, 1200
RENUM

PRI NTOFF - turn off printer echo
Synt ax: PRI NTOFF
After issuing the PRI NTOFF comrand screen output is no longer copied to the printer.

Rel at ed conmand: PRI NTON

PRI NTON - turn on printer echo
Synt ax: PRI NTON

After issuing the PRINTON conmand all subsequent screen output is copied to the
printer. In particular it can be used to print the output fromconmands such as TYPE
LI ST, DUwP, MDUMP, HELP, TOKENS, FIND, VERI FY, VARS, FNS and ARRAYS. Also, the output
from BASI C prograns can very easily be sent to the printer, which can be very useful
for debuggi ng.

Techni cal note:
PRI NTON works by intercepting TXT WRI TE CHAR and TXT OUT ACTI ON. Control codes sent
to TXT OUT ACTION are correctly intercepted and not sent to the printer.

Rel at ed commands: PRI NTOFF, SPOOL

REN - renane file
Synt ax: REN <new fil enane> <old fil ename>

This is the AMSDOS conmand and so is identical in effect and use to that described
in the Anstrad manual. The conmand is, however, intercepted and will pronpt for
parameters in the usual way, thus allow ng easy renam ng of files from BASIC.

REPLACE - find and replace string in BASIC program
Syntax: REPLACE <ol d string> <new string>

REPLACE wor ks exactly as FIND to find the old string, and then replaces it by the
new string. Both strings are tokenised (see FIND). The new string can be shorter, the
same | ength, or longer than the old string. BASIC variables remain defined, even if
the strings are of different |engths.

Care nust be taken when replacing single character strings (see note under FIND).

The old string may contain wildcards (see FIND).

Exanpl e:
| REPLACE, "f9% , " fl ag%
Renabl e variable f%to flag%

Rel at ed conmands: FI ND, REPLACEA

REPLACEA - replace ASCII string in BASIC program
Synt ax: REPLACEA <ol d string> <now string>
REPLACEA is the ASCI| equival ent of REPLACE, replacing one string by another.

Rel at ed conmands: FI NDA, REPLACE

ROMOFF - turn off all or selected ROM
Syntax: ROMOFF (<list of rom numbers>)

ROMOFF causes the nmachine to be reset, initialising only sel ected background ROVs.
If no paraneters are given no background ROMs will be initialised, otherwise all RO
will be initialised except those specified. Use the HELP command to determ ne the ROM
nunbers.

Warning: ROMOFF will reset the machine conpletely and destroy menory contents.

Exanpl e:
| ROMOFF, 5, 7
Turn off ROM 5 and the di sc ROM

Rel at ed Command: HELP

SAVE - save block of menory as binary file
Synt ax: SAVE <fil ename> <start address> <length> (<entry addr>) (<load addr>)

Any bl ock of menory can be saved, and is specified as in the BASIC command SAVE by
start address and |length. Again as in the BASIC command the fourth parameter is
optional and specifies the entry address for machine code programs. The fifth
(optional) paraneter is an addition to BASIC end allows the setting of a | oad address
different to the address fromwhich the file was saved. This latter option is only
avai |l able to disc users because the cassette firmvare does not allow the | oad address
to be set.

Not e: SAVE cl oses the output file if there is one.

Rel at ed commands: LOAD, SAVEA, VERIFY

SAVEA - save block of menory as ASCII file

Syntax: SAVEA <fil ename> <start address> <| ength>

SAVEA is the sane as SAVE except that the block of nmenory is saved as an ASCII file.
Only three paraneters apply since the ASCII file has no header in which to store the
other information. This command is provided for use with where only ASCII files may be
used, such as CP/ M applications.

Not e: SAVEA cl oses the output file, if there is one.

Rel at ed conmmand: SAVE

SPOCL - turn on spooling to file
Syntax: SPOOL <fil ename>

When the SPOOL command is issued the specified file is opened. Al subsequent screen
output is then copied to that file until a SPOOLOFF conmand is issued.
War ni ng: the use of sone comuands cause the output file to be closed and spooling to
be turned off. These include SAVE, SAVE and the BASI C cormand CAT. If this occurs the
command SPOOLOFF must still be issued before SPOOL can be used again.

Not e: SPOOL cl oses the output file, if there is one.

Rel at ed conmands: PRI NTON, SPOOLOPP

SPOCLOFF - turn off spooling to file
Synt ax: SPOOLOFF

The spool output file is closed and screen output is no longer copied to the file.
Note that this conmand is essential because the last block of the file is not witten

until this conmand is issued.

Rel at ed command: SPOOL

STATUS - display status information
Synt ax: STATUS

The status information listed is shown by the exanple below. The nmenory between
"Start of programi and ' End of Program is occupied by the current BASIC program
foll owed by any PROTEXT or MAXAM text. The area between 'End of programi and 'First
free location' is occupied by BASIC vari abl es. The area between 'Last free |ocation'
and HI MEM i s occupi ed by BASIC strings.

Exanpl e:
| st atus

Start of program = &0170

End of program = &223C
First free location = &223D
Last free | ocation = &A36F
HI MEM = &A36F
W DTH setting= 13
SYMBOL AFTER 240
Program si ze = 8397 bytes

Free nenory= 31027 bytes

TOKENS - di spl ay expansion strings
Synt ax: TOKENS

The strings associated with all the expansion tokens are |listed. The tokens 149 to 159
are set on reset. To set further definitions (using the BASIC command KEY) it may be
necessary to clear space in the expansion string buffer. To do this set sone of the
tokens to the null string. e.g. KEY 158,"”"

Exanpl e:
| t okens
128 0 129 1
130 2 131 3
132 4 133 5
134 6 135 7
136 8 137 9
138 . 139
140 RUN'DI SC 141
142 143
144 145
146 147
148 149 | STATUS
150 RUN 151 LI ST
152 MODE 2 153 | PRI NTOFF
154 | HELP 155 | TOKENS
156 | PRI NTON 157 | PROTEXT
158 | MAXAM 2 159 CALL &BB4E: CLS

TYPE - type ASCII file

Synt ax: TYPE <fil ename>

TYPE will read a file fromtape or disc and |ist the contents on the screen. Tab
characters are acted upon, taking tab positions at every eighth col um.
Note: TYPE closes the input file if there is one

Technical note:
If the file is of type ASCII, TYPE stops at a soft end of file (&LlA).

Rel at ed conmands: DUMP, LI ST

U - execute UTOPI A command
Syntax: U <command nanme> (<command par aneters>)

This command is provided for use when another ROMis intercepting a command neant
for the UTOPIA ROM It sinply causes the UTOPI A command to be executed as if the other
ROM wer e not present.

Exanpl e:

| U, “ ROMOFF”, 7

Rel at ed conmand: XROM

VARS - display currently defined variables

Synt ax: VARS

A conmplete list of all currently defined variables (excluding arrays) is produced.
The variables are listed in the order: integer variables, real variables, string
variables. Integer and string variables are listed with their current value, |ntegers
bei ng shown in deci mal and hexadecinal. The type of each variable is indicated by the

appropriate type marker: % (integer), ! (real), or $ (string).
Exanpl e:

| vars

COUNT % 15 &000F

SCORE% 6003 &3E83

TOTAL!

REPLY$ “yes”

Rel at ed commmands: ARRAYS, FNS

VERI FY - verify file content.
Syntax: VERIFY <fil ename> (<address>) (<Iength>)
The function of VERIFY is to conpare the contents of a part of memory with the

contents of a file, and to list all differences between the two. It can be used in
three ways:

(i) to verify the current BASIC program |If just a filenane is specified that
file will be conpared with the current BASIC program

(ii) to verify a conplete file. Enter a filenane and a start address. The file
will be conpared with the contents of nmenory starting at that address and

continuing to the end of the file.
(iii) to verity a block of nmenory. Enter a filenane, start address and | ength of
nenory in bytes. The conpl ete bl ock of nenory will be conpared with the file.
If the end of the file is reached before the end of the block of nenory a
nessage to that affect is displayed. This option allows the possibility of
verifying just part of a file.
If verification is successful the message “Verification successful” is displayed.
It not, the nenory addresses where nenory and file differ are listed. MEDI T can he
used to exam ne those nenory | ocations.

Exanpl es:
1. | VERIFY, " prog”
conpare BASIC programwith file “prog”.

2. | VERIFY, "nmenf, &3000, 560
Conpare 560 bytes of menmory starting at &3000 with the file “nmeni.

Rel at ed conmands: LOAD, SAVE, SAVEA, VTEXT

VERI FY - verify text
Synt ax: VTEXT <fil ename>

VTEXT is a special verify command for users of PROTEXT or MAXAM The current text in
menmory is conpared with the file. VTEXT does not list all differences but stops at the
first. This is because it is likely that any difference was caused by text being
inserted or deleted, and in that case nost of the subsequent bytes would give an
error.
Exanpl e:

| VTEXT, "l etter”

Rel at ed conmand: VERIFY

XROM - execute command in specified ROM
Synt ax: XROM <r om nunber > <command> (<paraneters>)

XROM i s provided for use when nore than one background ROM has a command of the sane
name. When this occurs the comand in the | ower numbered ROMis normally executed.
XROM al | ows the command in the higher nunbered ROMto be called. Use HELP to determ ne
t he ROM number you require.

XROM may be abbreviated to X
Exanpl e:

| XROM 5, “ CLEAR’

Rel ated command: U

APPENDI X

Menory map — RAM

Addr ess

0 firmwnvare workspace
40 Background ROVs | ower wor kspace area
(not used by Arnor ROMs)
(110) BASIC input buffer
(170) BASIC program area
BASI C vari abl e storage
PROTEXT/ MAXAM t ext area
** free menory **
H MEM1 ** free menory if himemaltered **
(A270) user defined characters
(A2F0) Background ROMs upper workspace
(including UTOPI A wor kspace — 256 bytes)
ACO0 BASI C wor kspace
B100 firmwvare wor kspace
C000 screen nenory

Addresses given in brackets are variable - the nunbers shown are for a nachine with
AMSDOS, UTOPI A, MAXAM and PROTEXT ROMs all initialised.

ACCESS <af n> (P)
ARRAYS
C

UTOPI A COMVAND SUMMARY

Set access attributes.
List currently defined arrays
Cal cul ate val ue of expression.

CALL <addr> (<a>) (<bc>) (<de>) (<hl>)

CAT (<drv>)

COPY (<fn>) <fn>
DEDI T <drv> <track>
DELETE <af n>

DI SCCOPY <drv> <drv>
DI SCTEST <drv>

RUMP <f n>

ERA <af n>

FIND <str>

FI NDA <str>

FNS

FORMAT <drv> (<fornp)
HELP (<ronp)

HELPR

I NFO <af n>

LI ST <fn>

LOAD <fn> (<addr>)
MDUMP <addr >(<addr >)
MEDI T <addr >

Cal |l code routine.

Cat al ogue files.

COPY file.

Disc editor.

Sel ective file deletion.

COPY di sc.

Test disc for read errors.

Dunp file contents.

Delete file or files.

Find tokenised string in BASIC program
Find ASCII string In BASIC

Li st currently defined functions.

For mat di sc.

Li st sideways ROVMs or external commands.
Li st RSX conmmands.

Di splay information about file or files.
List ASCII file.

Load file.

Menory dunp.

Menory editor.

MOVE <l ine> <line> <|ine>

PRI NTOFF

PRI NTON

REN <f n> <fn>
REPLACE <str> <str>
REPLACEA <str> <str>
ROMOFF (<r oms>)

Move BASIC |ines.

Turn of f printer echo.

Turn on printer echo.

Renanme file.

Find and replace tokenised string in BASIC program
Find and replace ASCI| string in BASIC Program
Turn off all or selected ROVs.

SAVE <fn> <addr> <len> (<entry>) (<reload>)

SAVEA <fn> <addr> <l en>

SPOOL <fn>
SPOOLOFF
STATUS
TOKENS
TYPE <fn>

U <command>
VARS

Save bl ock of menmory as binary file.

Save bl ock of memory as ASCII file.
Turn on spooling to file.

Turn off spooling to file.

Di spl ay status information.

Di spl ay expansi on strings.

Type ASCII file.

Execute UTOPI A command.

Li st currently defined vari abl es.

VERI FY <fn> (<addr>) (<len>)

VTEXT <fn>
X <ronm> <command>
XROM <r o> <command>

Abbrevi ati ons:

Verify file contents.

Verify text.

Abbrevi ation for XROM

Execute command in specified ROM

<fn> ... filenane

<afn> ... anbiguous filenane (i.e. allows wildcards * and ?)
<str> ... sring

<addr>... nenory address

<drv> ... drive (A or

B)

