HiSoft PASCAL 4T
Soft 155

Published by AMSOF'T, a division of

Amstrad Consumer Electronics plc
Brentwood House
169 Kings Road
Brentwood
Essex
Allrights reserved
First edition 1984

Reproduction or translation of any part of this
publication without the written permission of
the copyright owner is unlawful. Amstrad and
HiSoft Software reserve the right to amend or
alter the specification without notice. While
every effort has been made to verify that this
complex software works as described, it is not
possible to test any program of this complexity
under all possible conditions. Therefore the
program and this manual is provided “asis”
without warranty of any kind, either express or
implied.

© Copyright David Link, David Nutkins, 1983, 1984.
All rights reserved. No part of this publication may be reproduced or transmitted in any form or by
any means, including photocopying and recording, without the written permission of the
copyright holders. Such written permission must also be obtained before any part of this
publication is stored in a retrieval system of any nature.
The information contained in this document is to be used only for modifying the reader’s personal
copy of Hisoft Pascal.
It is an infringement of the copyright pertaining to Hisoft Pascal and associated documentation to
copy, by any means whatsoever, any part of Hisoft Pascal for any reason other than for the
purposes of making a security back-up copy of the object code.

SECTIONO
PRELIMINARIES

0.0 Introduction

Hisoft Pascal for the Amstrad CPC464 (HP464) is a fast, easy-to-use and powerful
implementation of the Pascal language as specified in the Pascal User Manual and
Report (Jensen/Wirth Second Edition).

There are a few omissions from this specification and these are as follows:

FILEs are not implemented although variables may be stored on tape.

A RECORD type may not have a VARIANT part.
PROCEDURESs and FUNCTIONS are not valid as parameters.

In practice you should not find these omissions restrictive.

Many extra functions and procedures are included to reflect the changing environ-
ment in which compilers are used; among these are POKE, PEEK, TIN, TOUT
and ADDR. Also, extra features have been added for the Amstrad CPC464 version
to take advantage of the powerful facilities available with this computer - support
for the event handling (AF TER, EVERY etc) is also provided.

In addition, a package of Turtle Graphics routines is included on Side 2 of the
program cassette supplied. These Turtle Graphics routines are documented in
Appendix 5.

Also supplied is a list of self-documenting routines for interfacing Hisoft Pascal to
the CPC464 firmware, a list of these routines is given in Appendix 6.

The compiler occupies approximately 12K of storage while the runtimes take up
roughly 5K and the editor 2K thus leaving you with some 20K for your programs
and data. Hisoft Pascal runs as a foreground RAM program and takes over the
CPC464 from its normal foreground program, BASIC. Thus it is not possible to mix
BASIC and Hisoft Pascal, there should be no need for this since anything you can do
in BASIC you can also do in Pascal.

To whet your appetite and to give you an immediate ‘feel’ for the package, we shall
now present a short example of how to create, compile and run a Pascal program -
remember though that there is no substitute for reading carefully through all
sections of this manual and we urge you to do this before using the package for your
own programs. In particular we recommend reading this section, the Editor section
(Section 4) and working through the example programs given in Appendix 4.

HiSoft PASCAL FOR THE CPC 464 ’ PAGE 0.1

0.0.1 Loading Instructions

Firstly, let’s load the compiler into your machine: place the supplied cassette in the
Datacorder with the label with ‘Hisoft Pascal’ on it facing up and press PLAY on the
Datacorder. Now type: CTRL [ENTER] (hold CTRL and the small [ENTER] key down
together)

A short BASIC loader program will be loaded and this will execute itself, produce a
message and ask you:

RAM top (LENTER] to default)?

At this point you should either enter a decimal number followed by [ENTER] or
simply hit [ENTER] by itself. If you specify a number then this will be taken as the
highest memory location that will NOT be used by the Pascal, all locations beneath
this will be used and therefore corrupted. If you simply hit [ENTER] by itself in
answer to the RAM top question then a default value of 45312 will be assumed: this
gives the most room for your Pascal programs. In most cases hitting [ENTER] by
itself will be sufficient; you only need specify a number if you wish to reserve some
space at the top of memory for machine code programs that you want to interface to
the Pascal.

Once you have specified a RAM top, or defaulted, then you will enter the internal
editor supplied and a help screen will be displayed.

0.0.2 Example Program

Let us assume that you have defaulted (by pressing [ENTER]) the RAM top question
load-up and you are now faced with the editor prompt ‘>’ - enter I followed by
[ENTER].

The number 10 should now appear at the left hand edge of the screen: this is a line
number which the editor has automatically generated for you. The editor will
continue to generate line numbers for you at the start of each line until you exit the
I mode (see below). So, you are faced with this number 1@ - now type in the
following program, ending each line by pressing the [ENTER] key and remembering
that the line numbers are provided by the editor:

1@ program hanoi;
20 var n : integer;
3@ procedure movedisk(sce,dest : integer);

4@ begin

50 write(sce:1,' to ',dest:1,'. ")

60 end;

70 procedure move(n,sce,aux,dest : integer);
80 begin

99 if n=1 then movedisk(sce,dest)

100 else

PAGE 0.2 HiSoft PASCAL FOR THE CPC 464

110 begin

120 move(n-1,sce,dest,aux);
130 movedisk(sce,dest);

140 move(n-1,aux,sce,dest)
150 end;

168 end;

178 (*MainBlock*)

180 begin

190 write('NumberofDiscs? '");
200 read(n); writeln;

210 move(n,1,2,3)

220 end.

230 [ESC]

Note the use of a comment, enclosed by (* *) in line 170 and remember that
semi-colons ‘;’at the end of Pascal statements are important.

You should now be back in editor command mode, with that > prompt again. Now
type the letter C followed by the [ENTER] key, this will compile your program into
machine code and produce a compilation listing for you. At the end of the
compilation, the message ‘Run?’ should appear - if this does not happen and
‘*ERROR*’ appears on the screen then press the letter E to get you back to the
editor and then press the [ENTER] key. If you do get an error then check the
program carefully against the above listing and retype any incorrect line: you can
retype a line by typing its line number, followed by a space and then the body of the
line, ending by hitting the [ENTER] key. Then compile again using C.

If there are no errors then respond to the ‘Run?’ question with a letter Y. The
program will now run and the first thing it does is ask you ‘How many Discs?
The program is a Towers of Hanoi solution where you have three pegs with a
number of different sized discs placed on one peg in descending order of size and the
object is to move all the disks to another peg, maintaining the order. So now enter
the number of disks you want placed on the first peg and press [ENTER]. Let’s say
you start off with three disks - so enter

3 [ENTER]

The program will now produce a listing of movements that will accomplish the
movement of the discs from one peg to another. The ‘Run?’ message will appear
again when the program finishes: type ‘Y’ or ‘y’ to run the program again or any
other key to return to the editor.

And that’s all there is to it!! Now, please read the rest of the Sections in this manual
carefully!

HiSoft PASCAL FOR THE CPC 464 | PAGE 0.3

0.1 Scope of this manual.

This manual is not intended to teach you Pascal; you are referred to the separate
Tutorial Guide to Hisoft Pascal and the excellent books given in the Blbhography if
you are a newcomer to programming in Pascal.

This manual is a reference document, detailing the particular features of Hisoft
Pascal.

Section 1 gives the syntax and the semantics expected by the compiler.

Section 2 details the various predefined identifiers that are available within Hisoft
Pascal, from CONS Tantsto FUNCTIONs.

Section 3 contains information on the various compiler options available and also
on the format of comments.

Section 4 shows how to use the line editor which is an integral part of HP464.
The above Sections should be read carefully by all users.

Appendix 1 details the error messages generated both by the compller and the
runtimes.

Appendix 2 lists the predefined identifiers and reserved words.

Appendix 3 gives details on the internal representation of data within Hisoft Pascal
- useful for programmers who wish to get their hands dirty.

Appendix 4 gives some example Pascal programs - study this if you experience any
problems in writing Hisoft Pascal programs.

Appendix 5 contains details of the Turtle Graphics package supplied on Side 2 of the
master tape.

Appendix 6 lists some useful Pascal procedures and functions to enable you to
interface easily with the CPC464 firmware.

0.2 Compiling and Running.

For details of how to create, amend, compile and run an HP464 program using the
integral line editor see Section 4 of this manual.

Once it has been invoked the compiler generates a listing of the form:
XXXX nnnn textofsourceline
where: X x x X isthe address where the code generated by this line begins.

nnnn isthe line number with leading zeroes suppressed.

If a line contains more than 80 characters then the compiler inserts new-line
characters so that the length of a line is never more than 80 characters.

The listing may be directed to a printer, if required, by the use of compiler option
$ P (see Section 3).

PAGE 0.4 HiSoft PASCAL FOR THE CPC 464

You may pause the listing at any stage by hitting any key: subsequently use [ESC]
to return to the editor or any other key to restart the listing.

If an error is detected during the compilation then the message ‘* ERROR*’ will be
displayed, followed by an up-arrow (‘1’), which points after the symbol which
generated the error, and an error number (see Appendix 1). The listing will pause;
hit ‘E’ to return to the editor to edit the line displayed, ‘P’ to return to the editor and
edit the previous line (if it exists) or any other key to continue the compilation.

If the program terminates incorrectly (e.g. without ‘END .’) then the message ‘No
more text willbedisplayed and control returned to the editor.

If the compiler runs out of table space then the message ‘No Table Space’
will be displayed and control returned to the editor. You may allocate a different
table size through use of the Editor’s Alter command.

If the compilation terminates correctly but contained errors then the number of
errors detected will be displayed and the object code deleted. If the compilation is
successful then the message ‘Run?’ will be displayed; if you desire an immediate
run of the program then respond with ‘Y’ or ‘y’, otherwise control will be returned to
the editor.

During a run of the object code various runtime error messages may be generated
(see Appendix 1). You may suspend a run by hitting any key; subsequently hit
[ESC] to abort the run or any other key to resume the run.

HiSoft PASCAL FOR THE CPC 464 PAGE 0.5

SECTION 1
Syntax and
Semantics

This section details the syntax and the semantics of Hisoft Pascal - unless otherwise
stated the implementation is as specified in the Pascal User Manual and Report
Second Edition (Jensen/Wirth).

1.1 IDENTIFIER.

Only the first 10 characters of an identifier are treated as significant.

Identifiers may contain lower or upper case letters. Lower case is converted to upper
case internally so that the identifiers HELLO, HELLo and hello are

equivalent.

Reserved words and predefined identifiers may be entered in upper case or lower
case and reserved words are converted to upper case by the editor.

HiSoft PASCAL FOR THE CPC 464 PAGE 1.1

1.2 Unsigned integer.

1.3 Unsigned number.

unsigned integer

digit

hex digit

Integers have an absolute value less than or equal to 32767 in Hisoft Pascal. Larger
whole numbers are treated asreals.

The mantissa of reals is 23 bits in length. The accuracy attained using reals is
therefore about 7 significant figures. Note that accuracy is lost if the result of a
calculation is much less than the absolute values of its arguments e.g. 2.00002 -2
does not yield 0.00002. This is due to the inaccuracy involved in representing
decimal fractions as binary fractions. It does not occur when integers of moderate

unsigned integer

size are represented as reals e.g. 200002 - 200000 = 2 exactly.

PAGE 1.2

HiSoft PASCAL FOR THE CPC 464

The largest real available is 3.4E38 while the smallest is 5.9E-39.

There is no point in using more than 7 digits in the mantissa when specifying reals
since extra digits are ignored except for their place value.

When accuracy is important avoid leading zeroes since these count as one of the
digits. Thus 0.000123456 is represented less accurately than 1.23456E-4.

Hexadecimal numbers are available for programmers to specify memory addresses
for assembly language linkage inter alia. Note that there must be at least one
hexadecimal digit present after the ‘#’, otherwise an error (*ERROR* 51) will be
generated.

1.4 Unsigned constant.

4 constantidentifier

. unsigned number .

NIL >

O -0—

Note that strings may not contain more than 255 characters. String types are
ARRAY [1..N] OF CHAR where N is an integer between 1 and 255 inclusive.
Literal strings should not contain end-of-line characters (CHR(13)) - if they do
then an ‘“* ERROR* 68’ is generated.

The characters available are the full expanded set of ASCII values with 256
elements. To maintain compatibility with Standard Pascal the null character is not
representedas’ ' ' "' ;instead CHR (@) should be used.

HiSoft PASCAL FOR THE CPC 464 PAGE 1.3

1.5 Constant.

constantidentifier

unsigned number

o
CHR { constant ._..@,

The non-standard CHR construct is provided here so that constants may be used for
control characters. In this case the constant in parentheses must be of type integer.

E.g.CONST bs=CHR(8);
cr=CHR(13);

1.6 Simple type.

type identifier

(identifier *>@——>

/
3t constant)O constant

Scalar enumerated types (identifier, identifier,

......) may not have more than 256
elements.

PAGE 14 HiSoft PASCAL FOR THE CPC 464

1.7 Type.

> simpletype |

>®—->-| type identifier IL —

ARRAY [simple type] OF type

O
SET

RECORD field list END

The reserved word PACKED is accepted but ignored since packing already takes
place for arrays of characters etc. The only case in which the packing of arrays
would be advantageous is with an array of Booleans - but this is more naturally
expressed as a set when packing is required.

'1.7.1 ARRAYs and SETs.

The base type of a set may have up to 256 elements. This enables SETs of CHAR to
be declared together with SETs of any user enumerated type. Note, however, that
only subranges of integers can be used as base types. All subsets of integers are
treated as sets of 0..255.

Full arrays of arrays, arrays of sets, records of sets etc. are supported.

Two ARRAY types are only treated as equivalent if their definition stems from the
same use of the reserved word ARRAY. Thus the following types are not
equivalent:

TYPE

tablea = ARRAY[1..100]1 OF INTEGER;
tableb=ARRAY[1..10881 OF INTEGER;

So a variable of type tablea may not be assigned to a variable of type tableb. This
enables mistakes to be detected such as assigning two tables representing different
data. The above restriction does not hold for the special case of arrays of a string
type, since arrays of this type are always used to represent similar data.

HiSoft PASCAL FOR THE CPC 464 PAGE 1.5

1.7.2 Pointers.

Hisoft Pascal allows the creation of dynamic variables through the use of the
Standard Procedure NEW (see Section 2). A dynamic variable, unlike a static
variable which has memory space allocated for it throughout the block in which it is
declared, cannot be referenced directly through an identifier since it does not have an
identifier; instead a pointer variable is used. This pointer variable, which is a static
variable, contains the address of the dynamic variable and the dynamic variable
itself is accessed by including a “ 1 ’ after the pointer variable. Examples of the use of
pointer types can be studied in Appendix 4.

There are some restrictions on the use of pointers within Hisoft Pascal. These are as
follows:

Pointers to types that have not been declared are not allowed. This does not prevent
the construction of linked list structures since type definitions may contain pointers
tothemselvese.g.

TYPE

item=RECORD
value : INTEGER;
next: T item
END;

link= T item;

Pointers to pointers are not allowed.
Pointers to the same type are regarded as equivalente.g.
VAR

first: link;
current: T item;

The variables first and current are equivalent (i.e. structural equivalence is used)
and may be assigned to each other or compared.

The predefined constant NI L is supported and when this is assigned to a pointer
variable then the pointer variable is deemed to contain no address.

1.7.4 RECORDs.

The implementation of RECORDs, structured variables composed of a fixed
number of constituents called fields, within Hisoft Pascal is as Standard Pascal
except that the variant part of the field list is not supported.

Two RECORD types are only treated as equivalent if their declaration stems from
the same occurrence of the reserved word RE C ORD see Section 1.7.1 above.

PAGE 1.6 HiSoft PASCAL FOR THE CPC 464

Note that RE CORD declarations do not open a new scope and as such you should not
use the same field identifier in two different RE CORD definitions at the same time.

e.g. Ifyou have declared recl = RECORD

f1:integer

END;
then you should not use
rec2 = RECORD
f1:integer
END;
but, say,

rec2 = RECORD
f2:integer
END;

The WITH statement may be used to access the different fields within a record in a
more compact form. You should note that W I TH statements cannot be called recursi-

vely and that W I TH does not open a new scope.

See Appendix 4 for an example of the use of WI TH and RE CORDs in general.

1.8 Field List.

O

identifier l)@-’[E

L}

Used in conjunction with RECORDs see Section 1.7.4 above and Appendix 4 for an

example.

1.9 Variable.

variable identifier J'

field identifier

expression

—-»Q—» field identifier

‘

NG

HiSoft PASCAL FOR THE CPC 464

PAGE 1.7

Two kinds of variables are supported within Hisoft Pascal; static and dynamic
variables. Static variables are explicitly declared through VAR and memory is
allocated for them during the entire execution of the block in which they were

declared.

Dynamic variables, however, are created dynamically during program execution by
the procedure NEW. They are not declared explicitly and cannot be referenced by an
identifier. They are referenced indirectly by a static variable of type pointer, which
contains the address of the dynamic variable.

See Section 1.7.2 and Section 2 for more details of the use of dynamic variables and
Appendix 7 for an example.

When specifying elements of multi-dimensional arrays the programmer is not
forced to use the same form of index specification in the reference as was used in the
declaration.

e.g. if variable a is declared as ARRAY[1..10] OF ARRAYL1..101 OF
INTEGER then either a [L11L1] or a [1,1] may be used to access element
(1,1) ofthearray.

1.10 FACTOR

unsigned constant

P variable

functionidentifier _(f expression

(expression)Q}
factor

[expression —r@-’ expression

See EXPRESSION in Section 1.13 and FUNCTIONSs in Section 3 for more details.

vvvJI-v,

PAGE 1.8 HiSoft PASCAL FOR THE CPC 464

1.11 TERM.

factor

Y9090

The lowerbound of a set is always zero and the set size is always the maximum of
the maximum of the base type of the set. Thus a SET OF CHAR always
occupies 32 bytes (a possible 256 elements - one bit for each element). Similarly a
SETOF@..10isequivalentto SETOF@..255

1.12 Simple Expression.

Lol T o

term bl

The same comments made in Section 1.11 concerning sets apply to simple
expressions.

HiSoft PASCAL FOR THE CPC 464 PAGE 1.9

1.13 Expression.

%Fimple expression >

R

When using IN, the set attributes are the full range of the type of the simple
expression with the exception of integer arguments for which the attributes are
taken asif[0..255]had been encountered.

simple expression

The above syntax applies when comparing strings of the same length, pointers and
all scalar types. Sets may be compared using >=, <=, <> or =. Pointers may only
be compared using = and <>.

1.14 Parameter list.

—L@ identifier : type identifier)
A A

A type identifier must be used following the colon - otherwise *ERROR* 44 will
result.

Variable parameters as well as value parameters are fully supported.

Procedures and functions are not valid as parameters.

PAGE 1.10 HiSoft PASCAL FOR THE CPC 464

1.15 Statement.

Refer to the syntax diagram on the following page.
Assignment statements:

See Section 1.7 for information on which assignment statements are illegal.

CASE statements:

An entirely null case list is not allowed i.e. CASE OF END; will generate an
error (*ERROR* 13).

The ELSE clause, which is an alternative to END, is executed if the selector
(‘expression’ overleaf) is not found in one of the case lists (‘constant’ overleaf).

If the END terminator is used and the selector is not found then control is passed to
the statement following the END.

F OR statements:

The control variable of a F OR statement may only be an unstructured variable, not
a parameter. This is half way between the Jensen/Wirth and ISO standard
definitions.

GOTO statements:

It is only possible to GOTO a label which is present in the same block as the GOTO
statement and at the same level.

Labels must be declared (using the Reserved Word LABEL) in the block in which
they are used; a label consists of at least one and up to four digits. When a label is
used to mark a statement it must appear at the beginning of the statement and be
followed by acolon-‘:’.

Note that GO TO should not be used to transfer execution out of a FOR. . . DO loop
nor out of a Procedure or Function.
WITH statements

WITH statements may not be used recursively and do not open a new scope (see
Section 1.7.4).

HiSoft PASCAL FOR THE CPC 464 PAGE 1.11

STATEMENT.

ﬂ‘——hl unsigned integer '——-@———

'

variable identifier

function identifier

procedure identifier

expression

BEGIN

b

j‘ ‘, Y »{ expression ,@—»

statement fU

n
W
@ @ statement

—P.>| variable identifier e

&=

*.

9@

expressuon

(N
\y
IF expression THEN statement ELSE statement
CASE xpression OF constant : -I1statement | END
A ’
ELSE statement |

e,

GOTO unsigned integer

PAGE 1.12

Y

HiSoft PASCAL FOR THE CPC 464

1.16 Block.

— LABEL

unsigned integer

|

PROCEDURE

FORWARD

CONST > identifier r-’@-" constant

- —(;)=
\/
TYPE »! identifier —»@—» type

- ‘r,\f
o/
VAR »1 identifier > type

—()

block:

identifier

statement

@ ‘

-

identifier J-Lparameter list o type identifier

()

HiSoft PASCAL FOR THE CPC 464

o/

PAGE 1.13

Forward References.

As in the Pascal User Manual and Report (Section 11.C.1) procedures and functions
may be referenced before they declared through use of the Reserved Word
FORWARD e.g.

PROCEDURE a(y:t) ; FORWARD; (*procedure a declared to be*)
PROCEDURE b(x:t); (*forward of this statement™)
BEGIN

al(p); (*procedure a referenced.*)

END;

PROCEDURE a; (*actual declaration of procedure a.*)
BEGIN

b(a);

END;

Note that the parameters and result type of the procedure a are declared along with
FORWARD and are not repeated in the main declaration of the procedure.
Remember, FORWARD is a Reserved Word.

1.17 Program.

PROGRAM identifier ; block END

Since files are not implemented there are no formal parameters of the program i.e.
you do not need to (and, indeed, must not) include (INPUT,OUTPUT) after the
program name.

PAGE 1.14 HiSoft PASCAL FOR THE CPC 464

1.18 Strong TYPEing.

Different languages have different ways of ensuring that the user does not use an
element of data in a manner which is inconsistent with its definition.

At one end of the scale there is machine code where no checks whatever are made on
the TYPE of variable being referenced. Next we have a language like the Byte
‘Tiny Pascal’ in which character, integer and Boolean data may be freely mixed
without generating errors.-Further up the scale comes BASIC which distinguishes
between numbers and strings and, sometimes, between integers and reals (perhaps
using the ‘%’ sign to denote integers). Then comes Pascal which goes as far as
allowing distinct user-enumerated types. At the top of the scale (at present) is a
language like ADA in which one can define different, incompatible numeric types.

There are basically two approaches used by Pascal implementations to strength of
typing; structural equivalence or name equivalence. Hisoft Pascal uses name
equivalence for RECORDs and ARRAYs. The consequences of this are clarified in
Section 1 - let it suffice to give an example here; say two variables are defined as
follows:

VAR A : ARRAYL'A'..'C'] OF INTEGER;
B : ARRAYL'A'..'C']l OF INTEGER;

then one might be tempted to think that one could write A : =B; but this would
generate an error (*xERROR* 10) under Hisoft Pascal since two separate ‘TYPE
records’ have been created by the above definitions. In other words, the user
has not taken the decision that A and B should represent the same type of data.
She/He could do this by:

VARA,B : ARRAYL'A'..'C'] OF INTEGER;

and now the user can freely assign A to B and vice versa since only one ‘TYPE
record’hasbeen created.

Although on the surface this name equivalence approach may seem a little
complicated, in general it leads to fewer programming errors since it requires more
initial thought from the programmer.

HiSoft PASCAL FOR THE CPC 464 PAGE 1.15

SECTION 2
Predefined
Identifiers.

2.1 Constants.

MAXINT The largest integer availablei.e. 32767.
FALSE, TRUE The constants of type Boolean.

2.2 Types.

INTEGER "~ SeeSection1.3.

REAL See Section1.3.

CHAR The full extended ASCII character set of 256 elements.
BOOLEAN (FALSE, TRUE). This typeisused in logical

operations including the results of comparisons.

2.3 Procedures and Functions.

2.3.1 Input and Output Procedures.

2.3.1.1 WRITE

The procedure WR I TE is used to output data to the screen or printer.

When the expression to be written is simply of type character then WRITE (e)
passes the 8 bit value represented by the value of the expression e to the screen or
printer as appropriate.

Note:

CHR(8) ([CTRL]H) gives a destructive backspace on the screen.
CHR(12) ([CTRL]L) clears the screen or gives a new page on the printer.
CHR(13) ([CTRL]M) performs a carriage return and line feed.
CHR(16) ([CTRL]P) will normally direct output to the printer

if the screen is in use or vice versa.

HiSoft PASCAL for the CPC 464 PAGE 2.1

Generally though:

WRITE(P1,P2,.......Pn); isequivalentto:
BEGINWRITE(P1); WRITE(P2); cenvenns; WRITE(Pn) END;

The write parameters P1,P2,......Pn can have one of the following forms:

<e>or<e:m>or<e:m:n>or<e:m:H>
where e, mand n are expressions and H is a literal constant.

We have 5 cases to examine:

1] e isof type integer: and either <e> or <e : m> isused.

The value of the integer expression e is converted to a character string with a
trailing space. The length of the string can be increased (with leading spaces) by the
use of m which specifies the total number of characters to be output. If m is not
sufficient for e to be written or m is not present then e is written out in full, with a
trailing space, and m is ignored. Note that, if m is specified to be the length of e
without the trailing space then no trailing space will be output.

2] e is of type integer and the form <e :m : H> is used.

In this case e is output in hexadecimal. If m=1 or m=2 then the value (e MOD
16 1 m) is output in a width of exactly m characters. If m=3 or m=4 then the full
value of e is output in hexadecimal in a width of 4 characters. If m>4 then leading
spaces are inserted before the full hexadecimal value of € as necessary. Leading
zeroes will be inserted where applicable. Examples:

WRITE(1025:m:H);
m=1 outputs: 1

m=2 outputs: 01
m=3 outputs: 0401
m=4 outputs: 0401
m=5 outputs: _0@481

3] e isof type real. The forms <e >, <e :m>or <e : m: n> may be used.

The value of e is converted to a character string representing a real number. The
format of the representation is determined by n. \

If n is not present then the number is output in scientific notation, with a mantissa
and an exponent. If the number is negative then a minus sign is output prior to the
mantissa, otherwise a space is output. The number is always output to at least one
decimal place up to a maximum of 5 decimal places and the exponent is always
signed (either with a plus or minus sign). This means that the minimum width of
the scientific representation is 8 characters; if the field width m is less than 8 then
the full width of 12 characters will always be output. If m>=8 then one or more
decimal places will be output up to a maximum of 5 decimal places (m=12). For
m> 12 leading spaces are inserted before the number. Examples:

PAGE 2.2 HiSoft PASCAL for the CPC 464

WRITE(-1.23E10:m);

m=7 givess -1.23000E+10
m=8 gives: -1.2E+10

m=9 gives: -1.23E+10
m=10 gives: -1.230E+10@
m=11 gives: -1.2300E+10
m=12 gives: =-1.23000E+10
m=13 gives: _-1.23000E+10

If the form <e :m:n> is used then a fixed-point representation of the number e
will be written with n specifying the number of decimal places to be output. No
leading spaces will be output unless the field width m is sufficiently large. If n is
zero then e is output as an integer. If e is too large to be output in the specified field
width then it is output in scientific format with a field width of m (see above).
Examples:

WRITE(1E2:6:2) gives: _00.00
WRITE(1E2:8:2) gives: __100.00

WRITE(23.455:6:1) gives: __23.5
WRITE(23.455:4:2) gives: _2.34550E+01
WRITE(23.455:4:0) gives: __23

4] e is of type character or type string.

Either <e> or <e : m> may be used and the character or string of characters will
be output in a minimum field width of 1 (for characters) or the length of the string
(for string types). Leading spaces are inserted if m is sufficiently large.

5] e is of type Boolean.

Either <e> or <e:m> may be used and ‘TRUE’ or ‘FALSE’ will be output

depending on the Boolean value of e, using a minimum field width of 4 or 5
respectively.

2.3.1.2 WRITELN

WRITELN gives a newline. This is equivalent to WRITE(CHR(13)). Note
that a linefeed is included.

WRITELN(P1,P2,...... P3); isequivalentto:
BEGINWRITE(P1,P2,...... P3); WRITELNEND;

2.3.1.3 PAGE

The procedure PAGE is equivalent to WRITE(CHR(12)); and causes the video
screen to be cleared or the printer to advance to the top of a new page.

HiSoft PASCAL for the CPC 464 PAGE 2.3

2.3.1.4 READ

The procedure READ is used to access data from the keyboard. It does this through
a buffer held within the runtimes - this buffer is initially empty (except for an
end-of-line marker). We can consider that any accesses to this buffer take place
through a text window over the buffer through which we can see one character at a
time. If this text window is positioned over an end-of-line marker then before the
read operation is terminated a new line of text will be read into the buffer from the
keyboard. While reading in this line all the various control codes detailed in Section
0.0 will be recognised. Now:

READ(V1,V2,..... Vn) ; isequivalent to:
BEGINREAD(V1); READ(V2); ; READ(Vn) END;
where V 1, V2 etc. may be of type character, string, integer or real.

The statement READ (V) ; has different effects depending on the type of V. There
are 4 cases to consider:

1] Vis of type character.

In this case READ (V) simply reads a character from the input buffer and assigns
ittoV.

If the text window on the buffer is positioned on a line marker (a CHR(13)

character) then the function EOLN will return the value TRUE and a new line of
text is read in from the keyboard. When a read operation is subsequently performed
then the text window will be positioned at the start of the new line.

Important note: Note that EOLN is TRUE at the start of the program. This means
that if the first READ is of type character then a CHR (13) value will be returned
followed by the reading in of a new line from the keyboard; a subsequent read of
type character will return the first character from this new line, assuming it is not
blank. See also the procedure READ LN below.

2]V is of type string.

A string of characters may be read using READ and in this case a series of
characters will be read until the number of characters defined by the string has
been read or EOLN = TRUE. If the string is not filled by the read (i.e. if end-of-line
is reached before the whole string has been assigned) then the end of the string is
filled with null (CHR(8)) characters - this enables the programmer to evaluate
the length of the string that wasread.

The note concerning in 1] above also applies here.

3] Visof type integer.

In this case a series of characters which represent an integer as defined in Section
1.3 is read. All preceding blanks and end-of-line markers are skipped (this means
that integers may be read immediately cf. the note in 1] above).

If the integer read has an absolute value greater than MAXINT (32767) then
the runtime error ‘Number too large’ will be issued and execution
terminated.

PAGE 2.4 HiSoft PASCAL for the CPC 464

If the first character read, after spaces and end-of-line characters have been
skipped, is not a digit or a sign (‘+’ or ‘-’) then the runtime error ‘Number
expected’ will bereported and the program aborted.

4]V isoftypereal.

Here, a series of characters representing a real number according to the syntax of
Section 1.3 will be read.

All leading spaces and end-of-line markers are skipped and, as for integers above,
the first character afterwards must be a digit or a sign. If the number read is too
large or too small (see Section 1.3) then an ‘Over f Low’ error will be reported, if
‘E’ is present without a following sign or digit then ‘Exponent expected’
error will be generated and if a decimal point is present without a subsequent digit
thena ‘Number expected’ errorwillbe given.

Reals, like integers, may be read immediately; see 1]and 3] above.
2.3.1.5 READLN

READLN(V1,V2,.....Vn) ; isequivalent to:
BEGIN READ(V1,VZ,..... Vn); READLN END;

READLN simply reads in a new buffer from the keyboard; while typing in the
buffer you may use the various control functions detailed in Section 0.0. Thus
EOLN becomes FALSE after the execution of READLN unless the next line is
blank.

READLN may be used to skip the blank line which is present at the beginning of
the execution of the object code i.e. it has the effect of reading in a new buffer. This
will be useful if you wish to read a component of type character at the beginning of a
program but it is not necessary if you are reading an integer or a real (since
end-of-line markers are skipped) or if you are reading characters from subsequent
lines.

In general it is best to use a simple READ LN after prompting for input and then
follow this by calls to the procedure READ.

Example of READing variables of type CHAR:

PROGRAM READCHAR;
VAR CH:CHAR;

BEGIN
REPEAT
WRITE ('ENTER SOME CHARACTERS');
READLN;
WHILE NOT EOLN DO
BEGIN
READ (CH);
WRITE ('The ASCII corresponding to 'CH,' is ',ORD(CH))
END;
UNTIL CH='E'
END.

HiSoft PASCAL for the CPC 464 PAGE 2.5

2.3.2 Input Functions.

2.3.2.1 EOLN

The function EOLN is a Boolean function which returns the value TRUE if the
next char to be read would be an end-of-line character (CHR(13)). Otherwise the
function returns the value FALSE.

2.3.2.2 INCH

The function INCH causes the keyboard of the computer to be scanned and, if a key
has been pressed, returns the character represented by the key pressed. If no key
has been pressed then CHR(@) is returned. The function therefore returns a
result of type character. This function should be used with the C- compiler option
(see Section 3).

2.3.3 Transfer Functions.

2.3.3.1 TRUNC(X)

The parameter X must be of type real or integer and the value returned by TRUNC
is the greatest integer less than or equal to X if X is positive or the least integer
greater than or equal to X if X is negative. Examples:

TRUNC(-1.5) returns-1, TRUNC(1.9) returns 1
2.3.3.2 ROUND(X)

X must be of type real or integer and the function returns the ‘nearest’ integer to X
(according to standard rounding rules). Examples:

ROUND(-6.5) returns-6 ROUND(11.7) returns 12
ROUND(=6.51) returns -7 ROUND(23.5) returns 24

2.3.3.3 ENTIER(X)

X must be of type real or integer - ENTIER returns the greatest integer less than
orequal to X, for all X. Examples:

ENTIER(-6.5) returns-7 ENTIER(11.7) returns 11

Note: ENTIER is not a Standard Pascal function but is the equivalent of BASIC’s
INT.Itis useful when writing fast routines for many mathematical applications.

PAGE 2.6 HiSoft PASCAL for the CPC 464

2.3.3.4 ORD(X)

X may be of any scalar type except real. The value returned is an integer
representing the ordinal number of the value of X within the set defining the type of

If X is of type integer then ORD (X) = X ; this should normally be avoided.

Examples:
ORD('a')returns97 ORD('®') returnsb4
2.3.3.5 CHR(X)

X must be of type integer. CHR returns a character value corresponding to the
ASCIIvalue of X. Examples:

CHR(49) returns'1' CHR(91) returns '[!

2.3.4 Arithmetic Functions.

In all the functions within this sub-section the parameter X must be of type real or
integer.

2.3.4.1 ABS(X)

Returns the absolute value of X (e.g. ABS (-4.5) gives 4.5). The result is of the
same type as X.

2.3.4.2 SQR(X)
Returns the value X * X i.e. the square of X. The result is of the same type as X.
2.3.4.3 SQRT(X)

Returns the square root of X - the returned value is always of type real. A ‘Maths
Call Error’isgenerated ifthe argument X is negative.

2.3.44 FRACX)

Returns the fractional partof X : FRAC(X) =X -ENTIER(X).

As with ENTIER this function is useful for writing many fast mathematical
routines. Examples:

FRAC(1.5) returns@. 5 FRAC(-12.56) returns@. 44

HiSoft PASCAL for the CPC 464 PAGE 2.7

2.3.4.5 SIN(X)

Returns the sine of X where X isinradians. The result is always of type real.
2.3.4.6 COS(X)

Returns the cosine of X where X is inradians. The result is of type real.

2.3.4.7 TANX)

Returns the tangent of X where X isin radians. The result is always of type real.
2.3.4.8 ARCTAN(X)

Returns the angle, in radians, whose tangent is equal to the number X. The result is
of typereal.

2.3.4.9 EXP(X)
Returns the value e 1 X where e = 2. 71828. Theresultis always of type real.

2.3.4.10 LN(X)

Returns the natural logarithm (i.e. to the base e) of X. The result is of type real. If
X <=@thena‘Maths Call Error’willbegenerated.

2.3.5 Further Predefined Procedures.

2.3.5.1 NEW(p)

The procedure NEW (p) allocates space for a dynamic variable. The variable p is a
pointer variable and after NEW (p) has been executed p contains the address of
the newly allocated dynamic variable. The type of the dynamic variable is the same
as the type of the pointer variable p and this can be of any type.

To access the dynamic variable p 1 is used - see Appendix 4 for an example of the
use of pointers to reference dynamic variables.

To re-allocate space used for dynamic variables use the procedures MARK and
RE LEASE (seebelow).

2.3.5.2 MARK(v])

This procedure saves the state of the dynamic variable heap to be saved in the
pointer variable v1. The state of the heap may be restored to that when the
procedure MA RK was executed by using the procedure RELEAS E (see below).

The type of variable to which v 1 points is irrelevant, since v 1 should only be used
withMARKand RELEASE, never NEW.

For an example program using MARK and RELEAS E see Appendix 4.

PAGE 2.8 HiSoft PASCAL for the CPC 464

2.3.5.3. RELEASE(v1)

This procedure frees space on the heap for use of dynamic variables. The state of the
heap is restored to its state when MARK(v1) was executed - thus effectively
destroying all dynamic variables created since the execution of the MARK
procedure. As such it should be used with great care.

See above and Appendix 4 for more details.
2.3.5.4 INLINE(C1,C2,C3,.........)

This procedure allows Z80 machine code to be inserted within the Pascal program;
the values (C1 MOD 256, C2 MOD 256, C3 MOD 256) are entered in the object
code starting from the current location counter address held by the compiler. C1,
€2, C3 etc. are integer constants of which there can be any number. Refer to
Appendix 4 for an example of the useof INLINE.

2.3.5.5 USER(V)

USER is a procedure with one integer argument V. The procedure causes a call to
be made to the memory address given by V. Since Hisoft Pascal holds integers in
two’s complement form (see Appendix 3) then in order to refer to addresses greater
than #7FFF (32767) negative values of V must be used. For example #9000
is -28672 and so USER(-28762); would invoke a call to the memory
address #C@00. However, when using a constant to refer to a memory address, it
is more convenient to use hexadecimal.

The routine called should finish with a Z80 RET instruction (#C9) and must
preserve the I X register.

The registers A,B,C,D,E H,L. and F are set up from the values of RA,RB,RC,RD,
RE,RH,RL and RF before calling the routine. The register values returned by the
routine are given in the variables listed above. See section 2.4.2.

2.3.5.6 HALT

This procedure causes program execution to stop with the message ‘Halt at
PC=XXXX’ where XXXX is the hexadecimal memory address of the location where
the HALT was issued. Together with a compilation listing, HALT may be used to
determine which of two or more paths through a program are taken. This will
normally be used during de-bugging.

2.3.5.7 POKEX,V)

POKE stores the expression V in the computer’s memory starting from the memory
address X. X is of type integer and V can be of any type except SET. See Section
2.3.5.5 above for a discussion of the use of integers to represent memory addresses.
Examples:

POKE(#6000,'A') places #4 1 atlocation #6000.
POKE(-28672,3.6E3) places@@ @B 80 70 (inhex.)at address #9000.

HiSoft PASCAL for the CPC 464 PAGE 2.9

2.3.5.8 TOUT (NAME,START,SIZE)

TOUT is the procedure which is used to save variables on tape. The first parameter
is of type ARRAYL1..121 OF CHAR and is the name of the file to be saved.
SIZE bytes of memory are dumped starting at the address START. Both these
parameters are of type INTEGER.

E.g. tosave the variable V to tape under the name ‘VAR’ use:
TOUT('VAR_________ ' ,ADDR(V) ,SIZE(V))

The use of actual memory addresses gives the user far more flexiblity than just the
ability to save arrays. For example all the global variables may be saved in one file.
See Appendix 4 for an example of the use of TOUT.

2.3.5.9 TIN(NAME,START)

This procedure is used to load, from tape, variables etc. that have been saved using
TOUT. NAME is of type ARRAYL[1.12] OF CHAR and START is of type
INTEGER. The tape is searched for a file called NAME which is then loaded at
memory address S TART. The number of bytes to load is taken from the tape (saved
onthetapeby TOUT). :

E.g. toload the variable saved in the example in Section 2.3.5.8 above use:

TINC'VAR_ ________ ' ,ADDR(V))
See Appendix 4 for an example of the use of TIN.

2.3.5.10 OUT(P,C)

This procedure is used to directly access the Z80’s output ports without using the
procedure INLINE. The value of the integer parameter P is loaded in to the BC
register, the character parameter C is loaded in to the A register and the assembly
instruction OUT (C), A isexecuted.

E.g.0UT(1,'A") outputsthecharacter ' A" totheZ80 port 1.
2.3.5.11 EXTERNAL (81, V1, V2,..)

This procedure allows calls to external ROMs and to RSXs in a way similar to
BASIC’s ‘bar’ command ‘I’. The first parameter is a string giving the name of the
external command. This may then be followed by any number of parameters either
of type integer, character or string. To pass a variable V to an external command
use ADDR (V). Lower case in command names is converted to upper case. String
descriptors are allocated on the heap.

Example: EXTERNAL('BASIC');
performs a return to BASIC in a controlled manner.

PAGE 2.10 HiSoft PASCAL for the CPC 464

The main use of this procedure is to access the disk system. For example:
EXTERNALC'DIR','*.COM');

will give a directory of the .COM files on the current drive.

If you wish to use an RSX you should introduce it to the firmware using the
firmware routine KL LOG EXT at the start of your program. This is
neccessary because when a program finishes it clears all event queues which has
the side-effect of clearing RSXs. See the CPC464 Firmware Manual for details
concerning RSXs.

2.3.5.12 AFTER(COUNT,TIMER,PROC)

AFTER corresponds to the BASIC command of the same name. Its first parameter
is an integer and is the count in 1/50ths of second after which the parameterless
procedure which is its third parameter will be called. The second parameter is the
timer to use. This should be an integer between @ and 3 inclusive.

e.g AFTER(100,1,FRED) ; will cause the procedure FRED to be run after
about 2 seconds, on timer 1.

2.3.5.13 EVERY(COUNT, TIMER,PROC)

EVERY corresponds to the BASIC command of the same name. Its parameters are
the same as EVERY (See Section 2.3.5.12 above). See the BASIC manual for details
of timers.

e.g. EVERY (3088,2,FRED); will cause the Pascal procedure FRED to be
invoked every 6 seconds. The procedure will be added to the ticker queue with a
priority of 2.

2.3.5.14 SOUND(G,K,L,H,M, J,I)
The SOUND procedure has 7 integer parameters as follows:

Channels to use and rendezvous requirements (Channel status).
Amplitude envelope to use.

Tone envelope to use.

Tone period.

Noise period.

Initial amplitude.

Duration or envelope repeat count.

N Otk

These correspond to the equivalent parameters of the BASIC SOUND command,
but note that they are in a different order and that they must all be specified.

When a program terminates all sounds are stopped.
The sound program is allocated on the heap.

See Chapter 6, pages 6-8, of the BASIC user instructions for more detail.

HiSoft PASCAL for the CPC 464 PAGE 2.11

2.3.5.15 ENV (N, P1,Q1,R1,P2,Q2,R2,..

The ENV command corresponds to the BASIC command of the same name with
integer parameters. Its first parameter is an envelope number (1..15). Then follow
up to 5 envelope sections. Envelope sections may be either hardware or software
controlled with each envelope section containing 3 integer parameters.

Software envelope sections have the following components:

1. Stepcount.
2. Stepsize.
3. Pausetime.

See the BASIC manual for details.
Hardware sections have the following components:

1. Envelope shape (Greater than 128). The value of this parameter less 128 is sent
toregister 13 of the sound generator.

2. Low byte of envelope period which is sent to register 11.

3. Highbyte of envelope period which is sent to register 12.

2.3.5.16ENT(S,T1,V1,W1,T2,V2,W2,..)
The ENT command corresponds to the BASIC command of the same name which
has integer parameters. Its first parameter is an envelope number (- 15..15). If
the envelope number is negative then the envelope is a repeated one as in BASIC.
Then follow up to 5 envelope sections. For relative sections the format is the same as
in the BASIC command.
The absolute section corresponding to

=toneperiod,pausetime (2parameters)
inBASICis

240+ toneperiod DIV 256, toneperiod MOD 256,
pausetime (3parameters)

in Hisoft Pascal. This is the same format as used by the firmware.

Refer to Chapter 8, pages 13-15 of BASIC User instructions for more detail of ENV
and ENT.

PAGE 2.12 HiSoft PASCAL for the CPC 464

2.3.6 Further Predefined Functions.

2.3.6.1 RANDOM(X)

RANDOM generates a pseudo-random number in the range @ - MAXINT ie. a
positive INTEGER. RANDOM takes one parameter, if this parameter is zero then
RANDOM(@) returns the next random number in the sequence otherwise the
parameter is taken as the seed for a new random number sequence.

2.3.6.2 SUCC(X)
X may be of any scalar type except real and SUCC (X) returns the successor of X.
Examples:

SUCC('A') returns 'B' SUCC('5') returns '6'

2.3.6.3 PRED(X)

X may be of any scalar type except real; the result of the function is the predecessor
of X. Examples:

PRED('j') returns 'i' PRED(TRUE) returns FALSE

2.3.6.4 ODD(X)

X must be of type integer. 0D D returns a Boolean result which is TRUE if X is odd
and FALSEif X iseven.

2.3.6.6 ADDR(V)

This function takes a variable identifier of any type as a parameter and returns an
integer result which is the memory address of the variable identifier V. For
information on how variables are held, at runtime, within Hisoft Pascal see
Appendix 3. For an example of the use of AD DR see Appendix 4.

2.3.6.7PEEK(X,T)

The first parameter of this function is of type integer and is used to specify a
memory address (see Section 2.3.5.5). The second argument is a type; this is the
result type of the function.

PEEK is used to retrieve data from the memory of the computer and the result may
be of any type.

In all PEEK and POKE (the opposite of PEEK) operations data is moved in Hisoft
Pascal’s own internal representation detailed in Appendix 3. For example: if the
memory from #9080 onwards contains the values: 50 61 73 63 61 6C (in
hexadecimal) then:

WRITE(PEEK(#9000 ,ARRAYL[1..6]10F CHAR)) gives Pascal’
WRITE(PEEK(#9000,CHAR)) gives‘P’
WRITE(PEEK(#9000,INTEGER)) gives 24912

WRITE(PEEK (#9000 ,REAL)) gives2.46227TE+29

see Appendix 3 for more details on the representation of types within Hisoft Pascal.

HiSoft PASCAL for the CPC 464 PAGE 2.13

2.3.6.7 SIZE(V)

The parameter of this function is a variable. The integer result is the amount of
storage taken up by that variable, in bytes.

2.3.6.8 INP(P)

INP is used to access the Z80’s ports directly without using the procedure
INLINE. The value of the integer parameter P is loaded into be BC register and
the character result of the function is obtained by executing the assembly language
instruction INA, (C).

2.3.6.9 INITEVENT(CLASS,PROC)

This function initialises an event block and returns its address as an integer. Its
first parameter is the class of the event as detailed in the CPC 464 Firmware
Manual. The event must be synchronous. The second parameter is a parameterless
procedure which is called when the revelant event occurs. The event block is
allocated on the heap. This function may be used by the advanced programmer to
access the powerful features of the operating system’s kernel that are not normally
availablein high level languages.

2.3.6.10 SQ(CHANNEL)

This function corresponds to the BASIC function SQ and returns an integer result
giving the status of the channel corresponding to its integer parameter. See the
BASIC manual for details. For example:

WRITE(SQ(1));

will give 4 ifno SOUND commands have been issued for channel A.

2.3.6.11 REMAIN(TIMER)
REMAIN is a function with one integer parameter which corresponds to the BASIC

function of the same name and returns an integer result giving the remaining count
for the timer corresponding to its integer parameter. It also disables this timer.

PAGE 2.14 HiSoft PASCAL for the CPC 464

2.4 Predefined variables

2.4.1 ERRFLG and ERRCHK

ERRFLG and ERRCHK are Boolean variables which may be used to trap
erroneous user input when reading numbers. If ERRCHK is true then ifa ‘Digit
Expected’ error occurs, instead of halting the program ERRFLG is set to true
and zeroisread. Normally ERRF LG isfalse. For example

ERRCHK:=TRUE;

REPEAT

READLN; READ(I)

IF ERRFLG THEN WRITE('Please enter a number')
UNTIL NOT ERRFLG;

2.4.2 RA,RB,RC,RD,RE,RH,RL and RF.

These variables of type char are used in conjunction with the US ER procedure (See
Section 2.3.5.5). Their values are used to initialise the Z80 registers before calling a
USER routine and are updated with the corresponding values returned by the
routine. For example:

RA:="a'; USER(#BB5A)

will output the character ‘a’ via the operating system routine TXT OUTPUT at
address #BB5A.

After
USER(#BB06);

RA will contain the value returned by the operating system after calling the KM
WAIT CHARroutine.

The predefined variables RAF,RBC,RDE and RHL are modified when assigning to
RA,RBetc.

2.4.3. RAF,RBC,RDE and RHL.

These variables of type integer are used in conjunction with the USER procedure
(See Section 2.3.5.5). Their values are used to initialise the Z80 registers before
calling a US ER routine and are updated with the corresponding values returned by
the routine. For example:

RA:=CHR(I);
USER(#BCC5); {SOUND T ADDRESSY}
IF ODD(RAF) THEN
WRITE('Address of tone envelope',RHL:4:H)
ELSE WRITE('Envelope not found')

will display the address of the envelope I if any. Note the use of ODD (RAF)
which is true ifthe carry flag is set.

Assigning to RHL etc will modify the corresponding values of RH,RL etc. (See
Section 2.4.2).

HiSoft PASCAL FOR THE CPC 464 , PAGE 2.15

SECTION 3
Comments and
Compiler Options.

3.1 Comments.

A comment may occur between any two reserved words, numbers, identifiers or
special symbols - see Appendix 2. A comment starts with a ‘{’ character or the ‘(*’
character pair. Unless the next character is a ‘$’ all characters are ignored until the
next ‘}’character or ‘*)’ character pair. If a ‘$’ was found then the compiler looks
for a series of compiler options (see below) after which characters are skipped until a
‘} or ‘*)’ is found. The ‘C’ and ‘¥’ characters may be obtained by using SHIFT and
T together and SHIFT and 7 together respectively.

3.2 Compiler Options.

Compiler options are included in the program between comment brackets and the
first option in the list is prefaced by a dollar symbol ‘$’.

Example:

(*$C-,A-*) toturn the keyboard and array checks off.

Option letters may be in upper or lower case.

The following options are available:

OptionkL:

Controls the listing of the program text and object code address by the compiler.

If L+ then a full listing is given.
If L - then lines are only listed when an error is detected.

DEFAULT: L+

HiSoft PASCAL for the CPC 464 PAGE 3.1

Option O:

Controls whether certain overflow checks are made. Integer multiply and divide
and all real arithmetic operations are always checked for overflow.

If 0 + then checks are made on integer addition and subtraction.
If 0 - then the above checks are not made.

DEFAULT: O+
Option C:

Controls whether or not keyboard checks are made during object code program
execution. If C+ then pressing any key will pause the execution of the program,
subsequently press [ESC] to abort the execution with a HALT (see section 2.3.5.6)
or any other key to continue.

This check is made at the beginning of all loops, procedures and functions. Thus the
user may use this facility to detect which loop etc. is not terminating correctly
during the debugging process. It should certainly be disabled if you wish the object
program to run quickly.

Use of C + does not increase the size of the object program.
If C - then the above check is not made.
DEFAULT: C+

Option S:
Controls whether or not stack shecks are made.

If S + then, at the beginning of each procedure and function call, a check is made to
see if the stack will probably overflow in this block. If the runtime stack overflows
the dynamic variable heap or the program then the message ‘Out of RAM at
PC=XXXX’ is displayed and execution aborted. Naturally this is not foolproof; if a
procedure has a large amount of stack usage within itself then the program may
‘crash’. Alternatively, if a function contains very little stack usage while utilising
recursion then it is possible for the function to be halted unnecessarily.

If S - then no stack checks are performed.
DEFAULT: S+

Option A:

Controls whether checks are made to ensure that array indices are within the
bounds specified in the array’s declaration.

If A+ and an array index is too high or too low then the message ‘Index too
high’ or ‘Index too Low’ will be displayed and the program execution
halted.

If A - then no such checks are made.

DEFAULT: A+

PAGE 3.2 HiSoft PASCAL for the CPC 464

Option I:

When using 16 bit 2’s complement integer arithmetic, overflow occurs when
performing a >, <, >=, or <= operation if the arguments differ by more than
MAXINT (32767). If this occurs then the result of the comparison will be
incorrect. This will not normally present any difficulties; however, should the user
wish to compare such numbers, the use of I+ ensures that the results of the
comparison will be correct. The equivalent situation may arise with real arithmetic
in which case an overflow error will be issued if the arguments differ by more than
approximately 3 . 4 E3 8 ; this cannot be avoided.

If I - then no check for the result of the above comparisons is made.
DEFAULT:I-

Option P:

If the P option is used the device to which the compilation listing is sent is changed
i.e. if the video screen was being used the printer is used and vice versa. Note that
this option is not followed by a ‘+’or ‘=’

DEFAULT: The video screenisused.
Option F:

This option letter must be followed by a space and then an twelve character
filename. If the filename has less than twelve characters it must be padded with
spaces.

The presence of this option causes inclusion of Pascal source text from the specified
file from the end of the current line - useful if the programmer wishes to build up a
‘library’ of much-used procedures and functions on tape and then include them in
particular programs.

The program should be saved using the built-in editor’s ‘P’ command.

E.g.
(*$F MATRIX include the text from a tape file MATRIX *)

When writing very large programs there may not be enough room in the computer’s
memory for the source and object code to be present at the same time. It is however
possible to compile such programs by saving them to tape and using the ‘F’ option
-then only 128 bytes of the source are in RAM at any one time, leaving much more
room for the object code.

This option may not be nested.

The compiler options may be used selectively. Thus debugged sections of code may
be speeded up and compacted by turning the relevant checks off whilst retaining
checks on untested pieces of code.

HiSoft PASCAL for the CPC 464 PAGE 3.3

SECTION 4
The Integral Editor.

4.1 Introduction to the Editor.

The editor supplied with all versions of Hisoft Pascal is a simple, line-based editor
designed to work with all Z80 operating systems while maintaining ease of use and
the ability to edit programs quickly and efficiently. This editor has been enhanced
for the AMSTRAD CPC464 by the addition of screen-editing facilities via use of the
COPY key together with SHIFT cursors, these extra features are explained in detail
below.

Text is held in memory in a compacted form; the number of leading spaces in a line
is held as one character at the beginning of the line and all Reserved Words are
tokenised into one character. This leads to a typical reduction in text size of 25%.

The editor is entered automatically when HiSoft Pascal is loaded from tape and
displays the message:

HiSoft Pascal Amstrad CPC464
Version of 26/9/84

Copyright Hisoft 1983, 4

ALL rights reserved

and then a help screen followed by the editor prompt >’.

In response to the prompt you may enter a command line of the following format:
CN1,N2,S1,S2 followed by [ENTER]

where:

C isthecommand tobe executed (see Section 4.2 below).
N1 isanumberintherangel-32767inclusive.
N2 isanumberintherange1-32767 inclusive.
S1 isastringofcharacters with a maximum length of 20.
S2 isastringof characters with a maximum length of 20.

The comma is used to separate the various arguments (although this can be
changed - see the ‘Q’ command) and spaces are ignored, except within the strings.
None of the arguments are mandatory although some of the commands (e.g. the
‘D’elete command) will not proceed without N1 and N2 being specified. The editor
remembers the previous numbers and strings that you entered and uses these
former values, where applicable, if you do not specify a particular argument within
the command line.

HiSoft PASCAL for the CPC 464 PAGE 4.1

The values of N1 and N2 are initially set to 1@ and the strings are initially empty.
If you enter an illegal command line such as F-1,180 ,HELLO then the line
will be ignored and the message ‘Pardon?’ displayed - you should then retype the
line correctly e.g. F1,10@ ,HELLO. This error message will also be displayed if
the length of S2 exceeds 20; if the length of S1 is greater than 20 then any excess
characters are ignored.

Commands may be entered in upper or lower case.

While entering a command line, certain control functions may be used e.g. [CTRL]X
to delete to the beginning of the line, [TAB] to advance the cursor to the new tab
position.

The following sub-section details the various commands available within the editor
- note that wherever an argument is enclosed by the symbols ‘< >’ then that
argument ‘must’ be present for the command to proceed.

4.2 The Editor Commands.

4.2.1 Text Insertion.

Text may be inserted into the textfile either by typing a line number, a space and
then the required text or by use of the ‘I’ command. Note that if you type a line
number followed by [ENTER] (i.e. without any text) then that line will be deleted
from the text if it exists. Whenever text is being entered then the control functions
[CTRL]X (delete to the beginning of the line), [TAB] (go to the next tab position),
[ESC] (return to the command loop) and [CTRL]P (toggle the printer) may be
employed. The [DEL] key will produce a destructive backspace (but not beyond the
beginning of the text line). Text is entered into an internal buffer within the run
times and if this buffer should become full then you will be prevented from entering
any more text - you must then use [DEL] or [CTRL]X to free space in the buffer.

Command: I n,m

Use of this command gains entry to the automatic insert mode: you are prompted
with line numbers starting at n and incrementing in steps of m. You enter the
required text after the displayed line number, using the various control codes if
desired and terminating the text line with [ENTER]. To exit from this mode use the
[ESC] key.

If you enter a line with a line number that already exists in the text then the
existing line will be renumbered to a number one greater than previously and the
line you typed in will be inserted with the existing line number after you have
pressed [ENTER]. If the automatic incrementing of the line number produces a line
number greater than 32767 then the Insert mode will exit automatically.

If, when typing in text, you get to the end of a screen line without having entered 80
characters (the buffer size) then the screen will be scrolled up and you may continue
typing on the next line.

PAGE 4.2 HiSoft PASCAL for the CPC 464

4.2.2 Text Listing.

You may direct a listing of your program to either the Amstrad screen (via the L’
command) or to the printer (via the ‘2’ command).

Command:Ln,m

This lists the current text to the screen from line number n to line number m
inclusive. The default value for n is always 1 and the default value for m is always
32767 i.e. default values are not taken from previously entered arguments. To list
the entire textfile simply use ‘L’ without any arguments. The listing will take place
a page (24 lines) at a time; after displaying a page the list will pause (if not yet at
line number m), hit [ESC] to return to the main editor loop or any other key to
continue the listing.

Command: Zn,m

List the textfile to the attached printer. If no printer is connected to the computer or
the printer is currently off-line then the message NO PRINTER! will be
displayed and no action taken; otherwise the textfile, between line numbers n and
m inclusive, will be printed.

If n and m are not specified then the whole textfile will be printed.

You may pause the listing, while printing, by hitting any key on the keyboard;
subsequently hit [ESC] to return to the editor and abort the print or any other key
to resume printing.

4.2.3 Text Editing.

Once some text has been created there will inevitably be a need to edit some lines.
Various commands are provided to enable lines to be amended, deleted, moved and
renumbered. Various commands exist to achieve this and these are given below.
Some elementary form of screen editing is also supported and this works as follows:

Whenever you are in the command mode of the editor (i.e. with a >’ sign in the left
margin of the current line) then you may split the cursor into a read cursor and a
write cursor by holding the [SHIFT] key down together with one of the cursor keys.
The write cursor will remain in the same position as the original cursor while you
can move the read cursor about the screen (but not off the screen) using [SHIFT] and
the cursor keys. Release [SHIFT] and the relevant cursor key when the read cursor
is where you want it to be. You can now either type directly on the keyboard and the
characters will appear at the write cursor or you can press the [COPY] key and in
this case characters will be transferred from the read cursor position to the write
cursor position and both cursor positions will be incremented.

To terminate this screen copy mode simply press [ENTER], the read cursor will
disappear and the line containing the write cursor will be scanned normally by the
editor.

In addition to this screen-editing capability, various line-editing commands are
supported viz:

HiSoft PASCAL for the CPC 464 PAGE 4.3

Command:D <n,m>

All lines from n to m inclusive are deleted from the textfile. If m<n or less than two
arguments are specified then no action will be taken; this is to help prevent careless
mistakes. A single line may be deleted by making m=n ; this can also be
accomplished by simply typing the line number followed by [ENTER].

Command: M <n,m,d>

Moves the block of text between line numbers n and m inclusive to a position before
the line with line number d and deletes the original block of text. The block that is
moved will be renumbered starting with a line number that is 1 greater than the
line number preceeding d.

Lines cannot be moved within themselves so that d must not lie within the block of
lines ntom.

Command:N<n,m>

Use of the ‘N’ command causes the textfile to be renumbered with a first line
number of n and in line number steps of m. Both n and m must be present and if the
renumbering would cause any line number to exceed 32767 then the original
numbering is retained.

Command: Fn,m,f,s

The text existing within the line range n < x < m is searched for an occurrence of
the string f - the ‘find’ string. If such an occurrence is found then the relevant text
line is displayed and the Edit mode is entered - see below. You may then use
commands within the Edit mode to search for subsequent occurrences of the string
f within the defined line range or to substitute the string s (the ‘substitute’ string)
for the current occurrence of f and then search for the next occurrence of f; see
below for more details.

Note that the line range and the two strings may have been set up previously by
any other command so that it may only be necessary to enter ‘F’ to initiate the
search - see the example in Section 4.3 for clarification.

Command: En

Edit the line with line number n. If n does not exist then no action is taken;
otherwise the line is copied into a buffer and displayed on the screen (with the line
number), the line number is displayed again underneath the line and the Edit mode
is entered. All subsequent editing takes place within the buffer and not in the text
itself; thus the original line can be recovered at any time.

In this mode a pointer is imagined moving through the line (starting at the first
character) and various sub-commands are supported which allow you to edit the
line. The sub-commands are:

¢ ‘(space) - increment the text pointer by one i.e. point to the next character in the
line. You cannot step beyond the end of the line.

[DEL] - decrement the text pointer by one to point at the previous character in the
line. You cannot step backwards beyond the first character in the line.

PAGE 44 HiSoft PASCAL for the CPC 464

[TAB] - step the text pointer forwards to the next tab position but not beyond the end
ofthe line.

[ENTER]- end the edit of this line keeping all the changes made.

Q - quit the edit of this line i.e. leave the edit ignoring all the changes made and
leaving the line as it was before the edit was initiated.

R - reload the edit buffer from the text i.e. forget all changes made on this line and
restore the line as it was originally.

L - list the rest of the line being edited i.e. the remainder of the line beyond the
current pointer position. You remain in the Edit mode with the pointer
re-positioned at the start of the line.

K-kill (delete) the character at the current pointer position.

Z - delete all the characters from (and including) the current pointer position to the
end of the line.

F - find the next occurrence of the ‘find’ string previously defined within a
command line (see the ‘F’ command above). This sub-command will automatically
exit the edit on the current line (keeping the changes) if it does not find another
occurrence of the ‘f i nd’ string in the current line. If an occurrence of the ‘f i nd’
string is detected in a subsequent line (within the previously specified line range)
then the Edit mode will be entered for the line in which the string is found. Note
that the text pointer is always positioned at the start of the found string after a
successful search.

S - substitute the previously defined ‘substitute’ string for the currently
found occurrence of the ‘find’ string and then perform the sub-command ‘F i.e.
search for the next occurrence of the ‘find’ string. This, together with the above ‘F’
sub-command, is used to step through the textfile optionally replacing occurrences
of the ‘find’ string with the ‘substitute’ string - see Section 4.3 for an
example.

I - insert characters at the current pointer position. You will remain in this
sub-mode until you press [ENTER] - this will return you to the main Edit mode with
the pointer positioned after the last character that you inserted. Using [DEL] within
this sub-mode will cause the character to the left of the pointer to be deleted from
the buffer while the use of [TAB] will advance the pointer to the next tab position,
inserting spaces. A ‘*’ cursor will be displayed while in this mode.

X - this advances the pointer to the end of the line and automatically enters the
insert sub-mode detailed above.

C - change sub-mode. This allows you to overwrite the character at the current
pointer position and then advances the pointer by one. You remain in the change
sub-mode until you press [ENTER] whence you are taken back to the Edit mode with
the pointer positioned after the last character you changed. [DEL] within this
sub-mode simply decrements the pointer by one i.e. moves it left while [TAB] has no
effect. A ‘+’ cursor will be displayed while in this mode.

HiSoft PASCAL for the CPC 464 | PAGE 4.5

4.2.4 Tape Commands.

Text may be saved to tape or loaded from tape using the commands ‘P’ and ‘G’ and
verified using ‘V:

Command: P n,m,s

The line range defined by n < x < m is saved under the filename specified by the
string s. Remember that these arguments may have been set by a previous
command.

Before entering this command make sure that your tape recorder is switched on and
in RECORD mode.

Command: G,,s

The storage device is searched for a textfile with a filename of s. If the required file
cannot be found then an error message will be displayed. If the correct file is found
then it will be loaded into memory. If an error is detected during the load then an
error message will be displayed and the load aborted. If this happens you must redo
the command.

While searching is in progress you may abort the load by holding [ESC] down; this
will interrupt the load and return to the main editor loop.

Note that if any textfile is already present then the textfile that is loaded will be
appended to the existing file and the whole file will be renumbered starting with
line 1 in stepsof 1.

Command:V,,s

Verify a textfile.

The storage device is searched for a filename as specified by the string s. When
found the file is compared with the textfile currently held in memory by the editor.
If the match is exact then VERIFIED is displayed, otherwise the message
FAILED isshown.

Command: Sn
Set the speed at which files are dumped to tape.

Normally, tape files are saved at the slower speed of 1000 baud; you may change
this to the high speed of 2000 baud by specifying a non-zero number after the §
command. To return to the slower speed simply use S without a following number.

E.g. S1forhigh-speed tape saving
S for normal tape saving

PAGE 4.6 HiSoft PASCAL for the CPC 464

4.2,5 Compiling and Running
from the Editor.

Command: A

Alter the compile/run defaults.

Press A [ENTER]

and you will be asked to specify:

Symbol Table size?

you can now enter a decimal number, followed by [ENTER], to specify a new value
for the size of the compiler’s symbol table. The value of the symbol table size at the
beginning of a session is normally 1858 and this should be sufficient for compiling
most programs.

If you simply hit [ENTER] instead of specifying a number then the symbol table size
isnot changed from its previous value.

Once you have dealt with the symbol table size you will then be prompted with:
Translate Stack?

You may now specify (by entering a decimal number followed by [ENTER]) the
address of the stack that is to be used by any Pascal object code program that is
translated using the ‘I command (see below). By default this stack is set to the
value specified in answer to the RAM top question which you answered when
entering the Pascal.

You will find it useful to set the Translate stack if you should need to reserve
memory at the top of the memory space for routines that you wish to interface to
your translated program.

If you hit [ENTER] without specifying a number then the Translate stack is not
changed from its previous value.

Command: Cn

This causes the text starting at line number n to be compiled. If you do not specify a
line number then the text will be compiled from the first existing line. For further
details see Section 0.2.

Command: R

The previously compiled object code will be executed, but only if the source has not
been expanded in the meantime - see Section 0.2 for more detail.

Command: Tn

This is the T’ranslate command. The current source is compiled from line n (or from
the start if n is omitted) and, if the compilation is successful, you will be prompted
with ‘0k 2: if you answer Y’ to this prompt then the object code produced by the
compilation will be moved to the end of the runtimes (destroying the compiler) and
then the runtimes and the object code will be dumped out to tape with a filename
equal to that previously defined for the ‘f i nd’ string. The code is dumped out in
binary file format so that it may be subsequently loaded using the CPC464’s BASIC
LOAD command.

HiSoft PASCAL for the CPC 464 PAGE 4.7

Translated object code contains instructions that perform a MC START
PROGRAM call when the code is executed, thus the object code takes over the
machine, clearing out BASIC and any RSXs that have been introduced to the
firmware. Thus, if you require any RSXs to be present when your object code is
running, you must initialise these yourself within your code by using the Pascal
USER procedure to call the firmware routine KL LOG EXT (#BCD1) to
introduce the relevant RSX.

Note that the object code is located at and moved to the end of the runtimes so that,
after a ‘T’ranslate you will need to reload the compiler - however this should present
no problems since you are only likely to ‘T’ranslate a program when it is fully
working.

If you decide not to continue with the dump to tape then simply type any character
other than Y’ to the ‘0 k 2’ prompt; control is returned to the editor which will still
function perfectly since the object code was not moved.

4.2.6 Other Commands.

Command: H

This command displays a help screen of the various editing commands available to
you. The commands are given in capital letters.

Command: Q,,d

This command allows you to change the delimiter which is taken as separating the
arguments in the command line. On entry to the editor the comma °,’ is taken as
the delimiter; this may be changed by the use of the ‘Q’ command to the first
character of the specified string d. Remember that once you have defined a new
delimiter it must be used (even within the ‘Q" command) until another one is
specified.

Note that the separator may not be a space.

Command: U

Simply displays the last line number in your current textfile. This command is
useful for finding the end of the textfile so that you can easily append to or list the
end of the file.

Command: W

Flips the screen mode between 40 characters per line and 80 characters per line.
The screen is initially set up to be in mode 1 i.e. 40 characters per line. Change this
to 80 per line using W [ENTER] once and then you can change it back to 40 per line
by using W [ENTER] a second time.

PAGE 4.8 HiSoft PASCAL FOR THE CPC 464

Command: Y

This command takes no arguments and it simply displays the current default
values of the command delimiter, line range (n-m) and Find and Substitute
strings. It should be remembered that certain editor commands (like ‘D’ and ‘L") do
not use the default line range but must have values specified on the command line.
Command: X

This displays the addresses of the start and end of text in hexadecimal. Useful for
finding out the size of your textfile in bytes.
Command: |

The vertical bar ('1’) command allows you to invoke background ROM commands
from within the editor.

The bar must be followed by a valid command name for the external ROM and this
may be optionally followed by any arguments needed by the command. Arguments
must be separated by a comma and string arguments must be enclosed within
single quotes (‘'’).

If the command or the arguments given are invalid then the error message
‘Pardon’will bedisplayed.

Eg. ldir,'*.PAS'
to obtain a directory listing of all the disc files with an extension of PAS.
Ibasic
toreturn to BASIC.

HiSoft PASCAL FOR THE CPC 464 PAGE 4.9

4.3 An Example of the use of the
Editor.

Let us assume that you have typed in the following program (using 110,10):
1@ PROGRAM BUBBLESORT

20 CONST
30 Size = 2000;
4@ VAR

56 Numbers : ARRAY [1..Sizel OF INTEGER;
60 I, Temp : INTEGER;

70 BEGIN

80 FOR I:=1 TO Size DO Number[I] :=RANDOM;
98 REPEAT

168 FOR - I:=1 TO Size DO

110 Noswaps := TRUE;
128 IF Number[I] > Number[I+1] THEN
138 BEGIN

14@ Temp := Number[I];

15@0 Number[I] := Number[I+1];

160 Number[I+1]1 := Temp;

178 Noswaps := FALSE

188 END

198 UNTIL Noswapss;

195 FORI := 1 TO Size DO WRITE(Number[Il:4)
200 END.

This program has a number of errors which are as follows:

Line 1@ Missing semi-colon.

Line 3@ Notreally anerrorbutsay we want a size of 100.
Line 100 Sizeshould be Size-1.

Line 110 Thisshouldbe atline 95 instead.

Line 19@ Noswapssshould be Noswaps.

Also the variable Numbers has been declared but all references are to Number.
Finally the BOOLE AN variable Noswaps hasnot been declared.

To put all this right we can proceed as follows:

F68,210 ,Number,Numbers and then use the sub-command ‘S’ repeatedly.
E10 then the sequence X; [ENTER] [ENTER]

E30 then_—_______ K C 1 [ENTER] [ENTER]
F100,100,Size,Size-1 ‘followed by the sub-command ‘S’.

M118,95

E190 then X DELETE [ENTER] [ENTER]
65Noswaps : BOOLEAN;

N10,10 to renumber in steps of 10.

You are strongly recommended to work through the above example actually using
the editor.

PAGE 4.10 HiSoft PASCAL for the CPC 464

APPENDIX 1
ERRORS.

A.1.1 Error numbers generated
by the compiler.

R L LNV WND =

Number too large.

Semi-colon expected.

Undeclared identifier.

Identifier expected.

Use '=' not ':=' in a constant declaration.
'='expected.

This identifier cannot begin a statement.
':=' expected.

')' expected.

Wrong type.

'.' expected.

Factor expected.

Constant expected.

This identifier is not a constant.

'THEN' expected.

'DO' expected.

'TO' or 'DOWNTO' expected.

'(' expected.

Cannot write this type of expression.
'0F' expected.

',' expected.

':'!' expected.

'PROGRAM' expected.

Variable expected since parameter 1is a variable
parameter.

"BEGIN' expected.

Variable expected incall to READ.

Cannot compare expressions of this type.
Should be either type INTEGER or type REAL.
Cannot read this type of variable.

This identifier is not a type.

Exponent expected inreal number.

Scalar expression (notnumeric) expected.
Null strings not allowed (useCHR(@)).

HiSoft PASCAL for the CPC 464 PAGE Al.l

'[' expected.

"]J' expected.

Array index type must be scalar.

'..'" expected.

'1' or ',' expected in ARRAY declaration.

Lowerbound greater than upperbound.

Set too large (morethan256possible elements).

Function result must be type identifier.

'," or ']1' expected in set.

*.." or '," or ']l' expected in set.

Type of parameter must be a type identifier.

Null set cannot be the first factor in a
non-assignment statement.

Scalar (including real) expected.

Scalar (not including real) expected.

Sets incompatible.

'<'and'>' cannot be used to compare sets.
"FORWARD', 'LABEL', 'CONST', 'VAR', 'TYPE' or
'"BEGIN' expected.

Hexadecimal digit expected.

Cannot POKE sets.

Array too large (>64K).

"END' or ';' expected in RECORD definition.
Field identifier expected.

Variable expected after '"WITH'.

Variablein WITH must be of RECORD type.

Field identifier has not had asociated WITH
statement.

Unsigned integer expected after 'LABEL'.

Unsigned integer expected after 'GOTO'.

This label is at the wrong level.

Undeclared Llabel.

The parameter of SIZE should be a variable.

Can only use equalitytests for pointers.

The only write parameter for integers with two
':'sise:m:H.

Strings may not contain end of line characters.

The parameter of NEW, MARK or RELEASE should be a
variable of pointer type.

The parameter of ADDR should be a variable.

This parameter must be a procedure.

This parameter must be a parameterless
procedure.

No more than 5 sections in an envelope.

PAGE Al.2 HiSoft PASCAL for the CPC 464

A.1.2 Runtime Error Messages.

When a runtime error is detected then one of the following messages will be
displayed, followed by ' at PC=XXXX" where XXXX is the memory location at
which the error occurred. Often the source of the error will be obvious; if not, consult
the compilation listing to see where in the program the error occurred, using X X X X
to cross reference. Occasionally this does not give the correct result.

1T.Halt

2.0verflow

3.0ut of RAM

4. /by zero also generated by DIV.
5.Index too low
6.Index too high
7.Maths Call Error
8. Number too Llarge
9. Number expected
10. Line too long
11.Exponent expected

Runtime errorsresult in the program execution being halted.

HiSoft PASCAL for the CPC 464 PAGE Al3

APPENDIX 2
Reserved words and
predefined
identifiers.

A 2.1 Reserved Words.

AND ARRAY BEGIN CASE CONST DIV DO
DOWNTO ELSE END FORWARD FUNCTION GOTO IF
IN LABEL MOD NIL NOT OF OR
PACKED PROCEDURE PROGRAM RECORD REPEAT SET THEN
TO TYPE UNTIL VAR WHILE WITH

A 2.2 Special Symbols.

The following symbols are used by Hisoft Pascal 4 and have a reserved meaning:

+ - x /
= <> < <= >= >
() L]

{ } (* %)

. H ’ ’

A 2.3 Predefined Identifiers.

The following entities may be thought of a declared in a block surrounding the
whole program and they are therefore available throughout the program unless
re-defined by the programmer within an inner block.

For further information see Section 2.

HiSoft PASCAL for the CPC 464 PAGE A21

CONST
TYPE

VAR

PROCEDURE

FUNCTION

PAGE A2.2

MAXINT =32767;

BOOLEAN=(FALSE, TRUE);

CHAR {The &expanded ASCII <character
set; ’

INTEGER=-MAXINT..MAXINT;

REAL {A subset of the real numbers.
See Section 1.3.

ERRFLG, ERRCHK: BOOLEAN: RA, RB,
RC, RD, RE, RF, RH, RL: CHAR;
RAF, RBC, RDE, RHL: INTEGER;

WRITE; WRITELN; READ; READLN; PAGE;
HALT,; USER; POKE; INLINE;

OUT; NEW; MARK; RELEASE; TIN; TOUT;
AFTER; EVERY, SOUND; ONSQ;

EXTERNAL; ENV; ENT;

ABS; SQR; ODD; RANDOM; ORD; SULC;
PRED; INCH; EOLN;

PEEK; CHR; SQRT; ENTIER; ROUND;
TRUNC; FRAC; SIN; COS;

TAN; ARCTAN; EXP; LN; ADDR; SIZE;
INP; REMAIN; INITEVENT; REMAIN;

HiSoft PASCAL for the CPC 464

APPENDIX 3

Datarepresentation
and storage.

A 3.1 Data Representation.

The following discussion details how data is represented internally by Hisoft
Pascal.

The information on the amount of storage required in each case should be of use to
most programmers (the SIZE function may be used see Section 2.3.6.7); other
details may be needed by those attempting to merge Pascal and machine code
programs.

A3.1.1 Integers.

Integers occupy 2 bytes of storage each, in 2’s complement form. Examples:

1 = #0001
256 = #0100
-256 = HFFOO

The standard Z80 register used by the compiler to hold integers is HL.

A 3.1.2 Characters, Booleans and other
Scalars.

These occupy 1 byte of storage each, in pure, unsigned binary.
Characters: 8 bit, extended ASCII is used.

1g! = #45

L = #5B

Booleans:

ORD(TRUE) =1 so TRUE isrepresented by 1.
ORD(FALSE) =0 so FALSE isrepresented by @.

The standard Z80 register used by the compiler for the above is A.

HiSoft PASCAL for the CPC 464 PAGE A3.1

A 3.1.3 Reals.

The (mantissa, exponent) form is used similar to that used in standard scientific
notation -only using binary instead of denary. Examples:

2=2%1@°
1=1%10°
-12.5 = -1.25%10@"
8.1 = 1.0%197"

or 1.”2*21
or 1.@2*20
or -25%27"
= =11001, %27
-1.1001, %23 whennormalised.
or 1 _ 1 __08.1;
1% — 1018, — 1081;
so now we need to do some binary long division..
0.0001100
181 | @.100000000000000
101
110
181
1000
101

at this point we see that the fraction recurs

_ 8.1, =0.0001100,
81

N

1.1 001-1 ﬂﬂ-* 2™* answer.

So how do we use the above results to represent these numbers in the computer? Well,
firstly we reserve 4 bytes of storage for each real in the following format:

sign normalised mantissa exponent | data
23 22 | | 0 7 o bit
T
HL ED register

sign:
normalised mantissa:

exponent:

PAGE A3.2

the sign of the mantissa; 1 = negative, 0 = positive.
the mantissa normalised to the form 1.xxxxxx
with the top bit (bit 22) always 1 except when
representing zero (HL=0, DE=0).

the exponent in binary 2’s complement form.

HiSoft PASCAL for the CPC 464

Thus:

P 1000000 00000000 00CPAEDD 00DPBOBT (#40,#00,#00,4#01)
g 1000000 00000000 00G0G00P 0POOPOPE (44D, #D0,4#00,4#00)
1
g

11

1 1160100 00000000 0000PPAD 00PEBOO11 (HEL,H#00,400,403)

1160118 01108110 81188110 11111180 (#66,#66,#66 ,#FC)

=P =N
N
-

So=

So, remembering that HL and DE are used to hold real numbers, then we would have
to load the registers in the following way to represent each of the above numbers:

2 = LD HL,#4000
LD DE,#0100
1 = LD HL,#4000

LD DE, #0000

LD HL,#E4D0O
LD DE, #0300

@.1 = LD HL,#6666
LD DE,#FC66

-12.5

I

N.B. Reals are stored in memory in the order ED LH.

A3.1.4 Records and Arrays.

Records use the same amount of storage as the total of their components.

Arrays: if n=number of elements in the array and
s =size of each element then

the number of bytes occupied by the arrayisn*s.

e.g. an ARRAYL1..18] OF INTEGER requires 10*%2=2@ bytes an ARRAY
£2..12,1..101 OF CHAR has 11*10=110 elements and so requires 110

bytes.

A 3.1.5 Sets.

Sets are stored as bit strings and so if the base type has n elements then the number of
bytesusedis: (n-1) DIV 8 + 1. Examples:

a SET OF CHAR requires (256-1) DIV 8 + 1 = 32 bytes a SET OF (blue,
green, yellow) requires (3-1) DIV 8 + 1 = 1 byte

HiSoft PASCAL for the CPC 464 PAGE A33

A 3.1.6 Pointers.

Pointers occupy 2 bytes which contain the address (in Intel format i.e. low byte first)
of the variable to which they point.

A 3.2 Variable Storage at
Runtime.

There are 3 cases where the user needs information on how variables are stored at
runtime:

a. Global variables -declared in the main program block.

b. Local variables -declared in an inner block.

c. Parameters and - passed to and from procedures and
returned values. functions.

These individual cases are discussed below and an example of how to use this
information may be found in Appendix 4.

Global variables

Global variables are allocated from the top of the runtime stack downwards e.g. if
the runtime stack is at #B@@ 0 and the main program variables are:

VAR i :INTEGER;
ch: CHAR;
x : REAL;

then:

j (which occupies 2 bytes - see the previous section) will be stored at locations
#BPPBO-2and #BOPA-1iec.at #AFFEand #AFFF.
¢ h (1 byte) will be stored at location #AFFE-Ti.e.at #AFFD.

X (4bytes)willbeplacedat#A FF9,#AFFA #AFFBand #AFFC.

Local variables

Local variables cannot be accessed via the stack very easily so, instead, the IX
register is set up at the beginning of each inner block so that (IX-4) points to the

start of the block’s local variablese.g.

PROCEDURE test;
VAR i,] : INTEGER;

PAGE A34 HiSoft PASCAL for the CPC 464

then:

i (integer - so 2 bytes) will be placed at IX-4-2 and IX-4-1 ie. IX-6 and
IX-5.j willbeplacedat IX-8 and I X-7.

Parameters and returned values

Value parameters are treated like local variables and, like these variables, the
earlier a parameter is declared the higher address it has in memory. However,
unlike variables, the lowest (not the highest) address is fixed and this is fixed at
(IX+2)e.g.

PROCEDURE test (i : REAL; j : INTEGER);

then:

j(allocated first)isat IX+2 and I X+3.

jisat IX+4,IX+5 IX+6,and IX+7.

Variable parameters are treated just like value parameters except that they are
always allocated 2 bytes and these 2 bytes contain the address of the variablee.g.

PROCEDURE test (i : INTEGER; VAR X : REAL);
then:

the reference to x is placed at IX+2 and IX+3; these locations contain the
address where x isstored. The valueof i isat I X+4 and I X+5.

Returned values of functions are placed above the first parameter in memorye.g.
FUNCTIONtest(i : INTEGER) : REAL;

then i is at IX+2 and IX+3 and space is reserved for the returned value at
IX+4, 1X+5 IX+6and IX+7.

HiSoft PASCAL for the CPC 464 PAGE A3.5

APPENDIX 4

Some example HiSoft
Pascal programs.

The following programs should be studied carefully if you are in any doubt as to how
to program in Hisoft Pascal.

PROGRAMFACTOR

230
240
250
260
270
280

(*Programtoshowtheuseofrecursion%)
PROGRAMFACTOR;

(*This program calculates the factorial of a
number input fromthe

keyboard 1) wusing recursion and 2) using an
iterativemethod.*)

TYPE
POSINT=0..MAXINT;

VAR
METHOD : CHAR;
NUMBER : POSINT;

(¥*Recursivealgorithm.*)
FUNCTIONRFAC(N : POSINT) : INTEGER;

VARF : POSINT;

BEGIN

IF N>1 THEN F:= N * RFAC(N-1) (*RFAC invoked N
times*)

ELSEF:=1;

RFAC:=F

END;

(*Iterativesolution¥*)

29O FUNCTIONIFAC(N : POSINT) : INTEGER;

HiSoft PASCAL for the CPC 464 PAGE A4.1

300

310 VARI,F:POSINT,;

320 BEGIN

330 F:=1;

340 FORI:=2TONDOF:=F*I; (*SimpleLoop¥*)

350 IFAC:=F

360 END;

370

3804 BEGIN

390 REPEAT ‘
400 WRITE('Give method (I or R) and number');
418 READLN;

420 READ(METHOD ,NUMBER);
430 IF METHOD = 'R’

440 THEN WRITELN(NUMBER,'!
450 ELSE WRITELN(NUMBER,'!
4608 UNTIL NUMBER=8

470 END.

' ,RFAC(NUMBER))
', IFAC(NUMBER))

PAGE A4.2 HiSoft PASCAL for the CPC 464

PROGRAMREV

{Program to list lines of a file in reverse order.
Shows use of pointers, records, MARK and RELEASE.)}

PROGRAM Reverseline;

TYPEelem=RECORD {Create linked-list structure}
next: telem;

ch: CHAR

END;

link=Telem;

VARprev,cur,heap: link; {all pointers to'elem'}

BEGIN

REPEAT {do this many times}

MARK(Cheap); {assign top of heap to 'heap'}

prev:=NIL; {points to no varaible yet.}

WHILE NOT EOLN DO

BEGIN

NEW(cur); {create a new dynamic record}

READ(curtch); {and assign its field to one
character from file.}

curfinext:=prev; {this field's pointer adresses}

prev:=cur{previous record.}

END;

{Write out the line backwards by scanning

the records set up backwards.}

cur:=prev;

WHILEcur<>NILDO {NIL is first}
BEGIN

WRITE(curt.ch); {WRITE this field i.e.character}
cur:=curf.next {Address previous field.}
END;

WRITELN;

RELEASE(heap); {Release dynamic variable space,}
READLN {Waitforanother line)

UNTIL FALSE {Use L[ESC] to exit}
END.

HiSoft PASCAL for the CPC 464 PAGE A4.3

PROGRAM TINTOUT

Program to illustrate the use of TIN and TOUT. The progrvam constructs a very
simple telephone directory on tape and then reads it back. You should write any
searching required.

PROGRAM TINTOUT;

CONST
Size=10;
TYPE
Entry =RECORD
Name : ARRAY[1..1810F CHAR;
Number : ARRAYL[1..10]0F CHAR
END;
VAR
Directory : ARRAY[1..SizelOFEntry;
I:INTEGER;
BEGIN
(Set up the directory..
FORI:= 1 TO Size DO
BEGIN
WITHDirectory[I] DO
BEGIN
WRITE('Name please');
READLN;
READ(Name);
WRITELN;
WRITE('Number please');
READLN;
READ (Number);
WRITELN
END
END;
{To dump the directory to tape use..}
TOUT('Directory' ,ADDR(Directory) ,SIZE(Directory))
{Now to read the array back do the following..}
TINC'Directory' ,ADDR(Directory))
{And now you can process the directory as
you wish....}

END.

PAGE A44 HiSoft PASCAL for the CPC 464

PROGRAM DIRTY.

10

140

150
160
170
180
190

200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360

{Program to show how to 'get your hands dirty'!
i.e.howtomodifyPascalvariablesusingmachine code.
Demonstrates PEEK, POKE, ADDR and INLINE)}

PROGRAM divmult2;

VAR r:REAL;

FUNCTION divby2(x:REAL):REAL; {Function to
divideby?2..

..quickly)

VARi:INTEGER;

BEGIN

i:=ADDR(x)+1; {Point to the exponent of x}

POKE(i ,PRED(PEEK(i,CHAR))); {Decrement the

exponentof x}
{see Appendix 3.1.3)}

divby2:=x
END;
FUNCTION multby2(x:REAL):REAL; {Function to
multiplyby 2..
..quickll}y
BEGIN
INLINECHDD ,#34,3); {INC (IX+3) - the exponent of x
- see Appendix 3.2}
multby2:=x
END;
BEGIN
REPEAT
WRITE('Enter the number r ');
READ(r); {No need for READLN - see

Section 2.3.1.4}

WRITELN('r divided by two is',divby2(r):7:2);
WRITELNC'r multiplied by two is',multby2(r):7:2)
UNTIL r=0

END.

HiSoft PASCAL for the CPC 464 PAGE A4.5

APPENDIX 5

HiSoft PASCAL
Turtle Graphics

The Turtle Graphics package is contained on the reverse side of your master
cassette tape under the name TURTLE.

The package is written in Pascal and may be loaded from within the Hisoft Pascal
editor by using the command ‘G, , TURTLE’. This will load the turtle graphics
program segment and append it to any existing program; note that, in order for it to
function correctly, the Turtle Graphics must be preceded by a normal PROGRAM
heading and a VAR declaration - TYPE, CONST and LABEL declarations are
optional and there must be no Procedures or Functions declared previous to the
inclusion of the Turtle Graphics package.

The TURTLE package as supplied contains a demonstration program and to run
this you should simply:

g9, ,TURTLE[ENTER]
C[ENTER]

and answer y tothe Run? question at the end of the compilation.

To extract the core Turtle Graphics routines, which are documented below, you
should:

d10,40[ENTER]
d1150,2320 [ENTER]
p1,1140,turtle[ENTER]

although you may, of course, want to keep some of the other procedures and
functions that are part of the demonstration program; these are placed between line
numbers 1150 throughto 23280.

As in the majority of Turtle Graphics implementations, Hisoft Pascal’s TURTLE
creates an imaginary creature on the screen which the user can move around via
some very simple commands. This ’turtle’ can be made to leave a trail (in varying
colours) or can be made invisible. The turtle’s heading and position are held in
global variables which are updated when the creature is moved or turned; obviously
these variables can be inspected or changed at any time.

HiSoft PASCAL FOR THE CPC 464 | PAGE A5.1

The facilities available are as follows:

Global Variables

heading

this is used to hold the angular value of the direction in which the turtle is currently
facing. It takes any REAL value, in degrees, and may be initialised to @ with the
procedure TURTLE (see below). The value @ corresponds to an EASTerly
direction so that after a call to the procedure TURTLE the turtle is facing left to
right. As the heading increases from zero then the turtle turns in an anti-clockwise
direction.

Xcor, Ycor

these are the current (x ,y) REAL co-ordinates of the turtle on the screen. The
CPC464 graphics screen has a size of 64@*20@ pixels and the turtle may be
positioned on any point within this area assuming you are working in the highest
resolution mode; when using lower resolution modes you may still specify
640 * 400 but the resolution will not be one dot.

Initially Xcor and Ycor are undefined, use of the procedure TURTLE initialises
them to 3008 and 200 respectively, thus placing the turtle in the middle of his
‘pool’.

penstatus

an BOOLEAN variable holding the current status of the ‘pen’ (i.e. the trail left by
the turtle). TRUE meansthepenisdown, FALSE means the penisup.

Procedures

The procedures available are:

INK (I,C1,C2:INTEGER)

sets the ink I to have the colour values specified by C1 and C2.If C1 = C2 then
the ink will be a steady colour, otherwise the ink will be flashing.

E.g.

INK(1,12,12); setsink 1 tosteady yellow
INK(D,16,21); sets ink @ to flashing pink and lime!

PAPER (LINTEGER)

sets the background (paper) colour of the screen to the colour(s) associated with the
ink I whichisaninteger.

PAGE A5.2 HiSoft PASCAL FOR THE CPC 464

PEN (LINTEGER);

sets the turtle’s pen colour to the colour(s) associated with the ink I.

PENDOWN (LINTEGER)

sets the turtle state so that it will leave a trail in the ink colour associated with the
parameter L.

This procedure assigns TRUE to penstatus.

PENUP

subsequent to a call to this procedure the turtle will not leave a trail. Useful for mov-
ing from one graphic section to another.

PENUP assignsthe value FALSE topenstatus.

SETHD (A:REAL)

takes a REAL parameter which is assigned to the global variable heading thus
setting the direction in which the turtle is pointing. Remember that a heading of @
correspondsto EAST, 9@ toNORTH, 180 toWESTand 27@to SOUTH.

SETXY (X,Y:REAL)

sets the absolute position of the turtle within the graphics area to the value (X, Y).
No check is made within this procedure to ascertain if (X, Y) is out of bounds; the
firmware checks for this.

FWD (L:REAL)

moves the turtle forward L units in the direction of its eurrent heading. A unit
corresponds to a graphics pixel, rounded up or down where necessary.

BACK(L:REAL)

moves the turtle L units in the directly opposite direction to that in which it is
currently heading (i.e. - 180) - the heading is left unchanged.

TURN (A:REAL)

changes the turtle’s heading by A degrees without moving it. The heading is
increased in the anti-clockwise direction.

MODE (M:INTEGER)

this sets the screen tomode M, where M isan integer with a value between @ and 2
corresponding to the screen mode established in BASIC.

RIGHT (A:REAL)

an alternative to TURN - RIGHT changes the turtle’s heading in the clockwise
direction by A degrees.

HiSoft PASCAL FOR THE CPC 464 PAGE A5.3

LEFT (A:REAL)

this is identical to TURN and is provided simply for convenience and compatibility
withRIGHT.

ARCR (R:REAL, A:INTEGER)

the turtle moves through an arc of a circle whose size is set by R. The length of the
arc is determined by A, the angle turned through (subtended at the centre of the
circle) in a clockwise direction. Typically R maybesetto @ . 5.

TURTLE

this procedure simply sets the initial state of the turtle; it is placed in the middle of
the screen, facing EAST (heading of @), on a bright yellow backgound paper and
leaving a blue trail. Remember that the state of the turtle is not initially defined so
that this procedure is often used at the beginning of a program.

This concludes the list of facilities available with Hisoft Pascal TURTLE; although
simple in implementation and use you will find that Turtle Graphics are capable of
prducing very complex designs at high speed. To give you a taste of this we present
some example programs below. Remember that you must have Hisoft Pascal loaded
before entering the programs.

Example Programs

In all the example programs given below we assume that you have already loaded
Hisoft Pascal and used ‘G, , TURTLE’ to load the Turtle Graphics package which
starts at line 1@ and finishes at line 1148 and that you have deleted the
demonstration-dependent parts of the package as detailed above. Now proceed with
the examples:

1. CIRCLES

1 PROGRAM CIRCLES;
2 VAR I:INTEGER;

@ BEGIN

@ TURTLE;

@ FOR I:=1 T0 9 DO
@ BEGIN

1198 ARCR(@.5,360);
12080 RIGHT(40)

1218 END

1228 END.

PAGE A5.4 HiSoft PASCAL FOR THE CPC 464

2. SPIRALS

1 PROGRAM SPIRALS;
2 VAR

PROCEDURE SPIRALS (L,A:REAL);
BEGIN

FWD(L);

RIGHT(A);

SPIRALS(L+1,A)

END;

BEGIN

TURTLE;

SPIRALS(9,95) (*or (9,98) or (9,121) ...

END.

3. FLOWER

1 PROGRAM FLOWER;
2 VAR

1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380

PROCEDURE PETAL (S:REAL);
BEGIN

ARCR(S,60);

LEFT(120);

ARCR(S,68);

LEFT(12@)

END;

PROCEDURE FLOWER (S:REAL);
VAR I:INTEGER;

BEGIN

FOR I =1 TO 6 DO

BEGIN

PETAL(S);

RIGHT (68)

END

END;

BEGIN TURTLE;
SETXY(127,6@);
LEFT(90); FWD(1@);
RIGHT(68); PETAL(B.2);
LEFT(60); PETAL(B.2);
SETHD(98); FWD(40);
FLOWER(@.4)

END.

*)

For further, extended study of Turtle Graphics we highly recommend the excellent
(if expensive) book ‘Turtle Geometry’ by Harold Abelson and Andrea di Sessa,
published by MIT Press, ISBN 0-262-01063-1.

HiSoft PASCAL FOR THE CPC 464

PAGE A5.5

APPENDIX 6
Useful Routines for
CPC464 Firmware

Given below is a listing of a set of Pascal procedures and functions that enable you
to call various firmware routines from within Hisoft Pascal. You should select and
use only the routines that you require for any one application. The routines are
designed to be self-documenting.

HiSoft PASCAL FOR THE CPC 464 LIBRARY

Library procedures for firmware calls

10

20

30

40

50

60

0

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460

LIB ()

(* getjoy is like BASIC's JOY FUNCTION; its parameter
should be the @ OR 1 ; it returns a "bit significant" value
as IN BASIC)

FUNCTION getjoy(stick:integer):integer;
BEGIN
user(#bb24);
IF stick=1 THEN ra:=rl;
getjoy:=ord(ra)
END;
(* txtinitialise re-initialises the Text VDU. That is

The text paper is SET T0 ink @.

The text pen is SET T0 ink 1.

The text window is SET TO the entire screen

The text cursor is enabled but turned off.

The character writing mode is SET T0 opaque.

The VDU 1is enabled.

The graphic character write mode is turned off.

The cursor is moved T0 the top left corner OF the window %)

PROCEDURE txtinitialise;
BEGIN

user(#bbée)
END;

(* txtout outputs a character OR control code T0 the
Text VDU without the Pascal processing control codes.
This should be used when, FOR example setting paper colours
when using control codes. *)

PROCEDURE txtout(c:char);
BEGIN

ra:=c;

user(#bb5a)
END;

(% txtrdchar_rqads a character from the screen at the current
cursor position. *)

FUNCTION txtrdchar:char;
BEGIN
user (#bb6@);
txtrdchar:=ra
END;

HiSoft PASCAL FOR THE CPC 464

470
480
490
500
510
520
530
54
550
560
570
580
590
680
610
620
630
640
650
660
670
680
690
700
710
720
130
740
750
760
770
730
790
800
810
820
830
840
850
860
870
8810
890
960
910
920
930
940
950
960
970

HiSoft

(* winenable sets the size OF the current text window *)

PROCEDURE winenable(colt,col2,rowl,row2:integer);
BEGIN

rhi=chr(col?); rd:=chr(col2);

rl:=chr(row!); re:=chr(row?);

user(#bb66)
END;

(* getwindow returns the size OF the current window IN its
variable parameters *)

PROCEDURE getwindow(VAR col1,col2,rouwl,row2:integer);
BEGIN

user(#bb69);

colT:=ord(rh); col2:=ord(rd);

rowl:=ord(rl); row2:=ord(re)
END;

(* clearwindow clears the current text window *)

PROCEDURE clearwindow;
BEGIN

user(#bbéc)
END;

(* setcolumn sets the cursor's horizontal position *)

PROCEDURE setcolumn(c:integer);
BEGIN

ra:=chr(c);

user(#bbéf)
END;

(* setrow sets the cursor's vertical position *)

PROCEDURE setrow(r:integer);
BEGIN

ra:=chr(r);

user(#bb72)
END;

(* setcursor sets the cursor's position TO the given
column AND row *)

PROCEDURE setcursor(c,r:integer);

BEGIN
rhi=chr(c); rli=chr(r);
user(#bb75)
END;
PASCAL FOR THE CPC 464 LIB(i)

988 (* getcursor returns the current cursor position AND the
990 current roll count. This roll count has no absolute

1000 meaning but is incremented IF the window is rolled down

}g;g AND decremented IF it is rolled up. *)

1038 PROCEDURE getcursor(VAR col,row,roll:integer);

1848 BEGIN

1858 user(#bb78);

1868 col:=ord(rh); row:=ord(rl); roll:=ord(ra)

1870 END;

1080

1898 (* curenable enables the cursor. The cursor is

}]gg displayed IF it is both enabled AND on. *)

1120 PROCEDURE curenable;

1138 BEGIN

1148 user(#bb7b);

1150 END;

1160

}]gg (* curdisable disables the cursor *)

1198 PROCEDURE curdisable;

1288 BEGIN

1218 user(#bbT7e)

1220 END;

12380

1%48 (* curon turns the cursor on AND displays it IF enabled *)
5

1268 PROCEDURE curon;

1278 BEGIN

1288 user(#bb81)

1298 END;

1300

1%;3 (* curoff turns the cursor off *)

1330 PROCEDURE curoff;

1340 BEGIN

1358 user(#bb84)

1360 END;

1370

1380

lzzg (x txtsetpen sets the pen FOR writing characters *)

1410 PROCEDURE txtsetpen(ink:integer);

1420 BEGIN

1438 ra:=chr{ink);

1448 user(#bb98)

1458 END;

1460

LIB(iii) HiSoft PASCAL FOR THE CPC 464

1920
1930
1940
1950
1960
1970

(x txtgetpen returns the current text pen ink *)

FUNCTION txtgetpen:integer;
BEGIN
user(#bb93);
txtgetpen:=ord(ra)
END;

(* txtsetpaper sets the ink FOR writing text background *)

PROCEDURE txtsetpaper(ink:integer);
BEGIN

ra:=chr(ink);

user(#bb96)
END;

(* gettxtpaper returns the ink FOR writing background *)

FUNCTION gettxtpaper:integer;
BEGIN
user(#bb99);
gettxtpaper:=ord(ra)
END;

(x txtinverse exchanges the current pen AND text inks *)

PROCEDURE txtinverse;
BEGIN

user (#bb9c)
END;

(x txtsetback causes transparent mode TO be used IF its
parameter is true. i.e. does NOT write the background.
IF its parameter is false THEN the opaque mode which
writes the background is used. *)

PROCEDURE txtsetback(b:boolean);
BEGIN

ra:=chr(ord(b));

user(#bb9f)
END;

(x txtgetback returns true IF transparent mode is being
used. It returns false IF opaque mode is being used. *)

FUNCTION txtgetback:boolean;
BEGIN

user(#bba?);

txtgetback:= ra = chr(1)
END;

HiSoft PASCAL FOR THE CPC 464 LIB(iv)

1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420

LIB(V)

(* txtgetmatrix returns the address OF the character matrix
corresponding TO the character given by its parameter. *)

FUNCTION txtgetmatrix(c:char):integer;
BEGIN

ra:=c;

user(#bbab);

txtgetmatrix:=rhl
END;

(¥ txtsetmatrix copies the character matrix at its adr
parameter TO be used as the matrix FOR its char parameter *)

PROCEDURE txtsetmatrix(c:char;adr:integer);
BEGIN

ra:=c;

rhl:=adr;

user(#bbas)
END;

(* setmtable sets the user defined character matrix address
T0 its addr parameter. Its ¢ parameter is used as the
number coresponding TO the Llowest character used IN the
table. IF this parameter is NOT IN the range @ T0 255
THEN the user defined character table is considered
T0 be empty. Normally arrays are used TO store such
matrices AND the addr FUNCTION used T0 pass the address
0F the table. *)

PROCEDURE setmtable(c,adr:integer);
BEGIN

rde:=c; rhl:=adr;

user(#bbab)
END;

(* txtstrselect selects a current stream number which
should be IN the range @..7. Many attributes OF the
text VDU may be SET independently on different streams. *)

PROCEDURE txtstrselect(s:integer);
BEGIN

ra:=chr(s);

user(#bbbs)
END;

HiSoft PASCAL FOR THE CPC 464

2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2578
2580
2590
2600
2610
2620
2630
2640
2658
2660
2670
2680
2690
2700
2110
2720
2730
2740
2750
2760
2778
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900

(* txtswapstreams swaps the stream descriptors OF two streams *)

PROCEDURE txtswapstreams(si,s2:integer);
BEGIN
rbr=chr(s1); rc:=chr(s2);
user(#bbb7)
END;
(*graintialise initialises the graphics VDU that is

Sets the graphic paper T0 ink @

Sets the graphic pen T0 ink 1

Sets the user origin TO the bottom left corner OF the screen
Moves the current position TO the user origin

SET the graphics window to cover the whole screen.
The graphics window is NOT cleared. *)
PROCEDURE grainitialise;
BEGIN
user(#bbba)
END;
(+ gramoveabsolute moves the current position TO the absolute

position given by its parameters. %)
PROCEDURE gramoveabsolute(x,y:integer);
BEGIN
rde:=x; rhl:=y;
user(#bbch)
END;
(+ gramoverelative moves the current position relative T0 the

current position %)

PROCEDURE gramoverelative(x,y:integer);
BEGIN

rde:=x; rhl:=y;

user(#bbc3);
END;

(x graaskcursor returns the current graphics position IN its
variable parameters. *)

PROCEDURE graaskcursor(VAR x,y:integer);
BEGIN

user(#bbcé6);

x:=rde; y:=rhl
END;

HiSoft PASCAL FOR THE CPC 464 LIB(vi)

2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3118
3120
3130
3140
3150
3160
3178
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3358

LIB(vii)

(* grasetorigin sets the Llocation OF the user origin AND
moves the current position there %)

PROCEDURE grasetorigin(x,y:integer);
BEGIN

rde:=x; rhl:=y;

user{(#bbc9)
END;

(* gragetorigin returns the position OF the user origin. *)

PROCEDURE gragetorigin(VAR x,y:integer);
BEGIN

user (#bbcc);

x:=rde; y:=rhl
END;

(* grawinwidth sets the right AND left edges OF the
graphics window. *)

PROCEDURE grawinwidth(x1,x2:integer);
BEGIN

rde:=x1; rhl:=x2;

user(#bbcf)
END;

(* grawinheight sets the top AND bottom edges OF the
graphics window *)

PROCEDURE grawinheight(y1,y2:integer);
BEGIN

rde:=y1; rhl:=y?2;

user(#bbd2)
END;

(* gragetwwidth returns the left AND right edges OF the
graphics window *)

PROCEDURE gragetwwidth(VAR x1,x2:integer);
BEGIN

user(#bbd5);

x1:=rde; x2:=rhl
END;

HiSoft PASCAL FOR THE CPC 464

3360 (* gragetwheight returns the top AND bottom OF the graphics
3378 window *)

3380

3390 PROCEDURE gragetwheight(VAR y1,y2:integer);

3400 BEGIN

3410 user(#bbd8);

3620 yl:=rde; y2:=rhl

3430 END;

3440

%228 (* graclearwindow clears the graphics window *)

3470 PROCEDURE graclearwindow;

3480 BEGIN

3490 user(#bbdb)

3500 END;

3510

3520 (* grasetpen sets the gaphics pen ink which is used FOR
ggzg plotting points AND lines. %)

3550 PROCEDURE grasetpen(ink:integer);

3560 BEGIN

3578 ra:=chr(ink);

3580 user(#bbde)

3598 END;

3600 '

gg;g (* gragetpen returns the current graphic plotting ink *)
3630 FUNCTION gragetpen:integer;

3640 BEGIN

3650 user(#bbet);

3660 gragetpen:=ord(ra)

3678 END;

3680

3690 (x grasetpaper sets the graphics background ink which is
g;?g used FOR clearing the window. *)

5720 PROCEDURE grasetpaper(ink:integer);

3738 BEGIN

3740 ra:=chr(ink);

3750 user(#bbeé)

3760 END;

3770

g;gg (* gragetpaper returns the current graphics background ink. *)
3800 FUNCTION gragetpaper:integer;

38108 BEGIN

3820 user(#bbe7);

3830 gragetpaper:=ord(ra)

3848 END;

3850

HiSoft PASCAL FOR THE CPC 464 LIB(viii)

3860
3870
3880
3890
3900
3910
3920
3930
3940
3950
3960
3970
3980
3998
P00
4810
4020
4030
4040
4@50
4060
470
4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220
4230
4240
4250
4260
4270

LIB(ix)

(* graplotabsolute plots a point IN an absolute position IN
the current graphics pen ink AND the current graphics
write mode. *)

PROCEDURE graplotabsolute(x,y:integer);
BEGIN

rde:=x;rhl:=y;

user(#bbea)
END;

(x graplotrelative plots a point relative TO the current
position IN the current graphics pen ink AND the current
graphics write mode. *)

PROCEDURE graplotrelative(x,y:integer);
BEGIN

rde:=x;rhl:=y;

user(#bbed)
END;

(* gratestabsolute moves the current graphics position AND
returns the value OF the ink found there. *)

FUNCTION gratestabsolute(x,y:integer):integer;
BEGIN

rde:=x; rhl:=y;

user (§bbf@);

gratestabsolute:=ord(ra)
END;

(x gratestrelative moves the graphics pointer relative T0
the currrent position AND returns the value OF the ink
at the new position. *)

FUNCTION gratestrelative(x,y:integer):integer;
BEGIN

rde:=x; rhl:=y;

user(#bbf3);

gratestrelative:=ord(ra)
END;

HiSoft PASCAL FOR THE CPC 464

4280
4290
4300
4310
4320
4330
4340
4350
4360
4370
4380
4390
4400
4410
4629
4430
4440
4450
4460
4470
4430
4490
4500
4519
4520
4530
4540
4550
4560
4570
4580
4590
4600
4610
4620
4630
4640
4650
4660
4670
4680
4690
4700
4710
4720
4730
4740
4750

(* gralineabsolute moves the current position T0 the endpoint
supplied AND draws a line IN the current graphics ink
using the current graphics mode. *)

PROCEDURE gralineabsolute(x,y:integer);
BEGIN

rde:=x; rhl:=y;

user (#bbfé)
END;

(x gralinerelative moves the current position TO the
endpoint supplied AND draws a line IN the current graphics

pen ink using the current graphics mode. %)
PROCEDURE gralinerelative(x,y:integer);
BEGIN
rde:=x; rhl:=y;
user (#bbf9)
END;
(* grawrchar writes a character on the screen at the current

graphics position AND moves the graphics position right

ready TO write a another character. *)
PROCEDURE grawrchar(c:char);
BEGIN
ra:=c;
user(#bbfc)
END;
(* scrinitialise re-initialises the Screen Pack, the mode,

AND the 1inks. *)

PROCEDURE scrinitialise;
BEGIN

user(#bbff)
END;

(* scrsetoffset sets the offset OF the first character OF the
screen. by changing this offset the screen can be rolled
by the hardware. *)

PROCEDURE scrsetoffset(ink:integer);
BEGIN

rhl:=ink;

user(#bc@s)
END;

HiSoft PASCAL FOR THE CPC 464 LIB(x)

4760 (* scrgetlocation returns the current offset OF the first
4770 character on the screen. *)

4780

4798 FUNCTION scrgetlocation:integer;

4800 BEGIN

4818 user(#bclb);

4828 scrgetlocation:=rhl

4830 END;

4840

4850 (* scrsetmode sets the screen IN a new mode; clears the
23?3 screen AND sets up the windows TO be the whole screen *)
4880 PROCEDURE scrsetmode(m:integer);

4890 BEGIN

4988 ra:=chr(m);

4910 user(#bcfe)

4920 END;

4930

2323 (*+ scrgetmode returns the current screen mode. *)

4960 FUNCTION scrgetmode:integer;

4970 BEGIN

4986 user(#bc1l);

4998 scrgetmode:=ord(ra)

5088 END;

5018

gg%g (* scrclear clears the screen TO ink 8. *)

5848 PROCEDURE scrclear;

5058 BEGIN

5060 user(#bc14)

5870 END;

5080

5898 (* scrcharlimits returns the last character column AND
g]gg row on the screen IN the current mode. *)

5128 PROCEDURE scrcharlimits(VAR col,row:integer);

5130 BEGIN

5140 user(#bc17);

5158 col:=ord(rb); row:=ord(rc)

5160 END;

5170

LIB(xi) HiSoft PASCAL FOR THE CPC 464

5180
5190
5200
5210
5220
5230
5240
5250
5260
5270
5280
5290
5300
5310
5320
5330
5340
5350
5360
5370
5380
5398
5400
5410
5420
5430
5440
5450
5460
5470
5480
5490
5500
5510
5520
5530
5540
5550
5560

(¥ scrsetink sets the colours TO display an ink. IF the
two colours are the same THEN the ink will remain
a steady colour. IF the colours are different THEN
the ink will alternate between these two colours. *)

PROCEDURE scrsetink(ink,col1,col2:integer);
BEGIN
ra:=chr(ink); rb:=chr(col?); rc:=chrcol2);
user(#bc32)
END;

(* scrgetink returns the two coolours that are used T0
display an ink on the screen. *)

PROCEDURE scrgetink(VAR col1,col2:integer);
BEGIN

user(#bc35);

coll:=ord(rb); col2:=ord(rc)
END;

(* scrsetborder sets the two colours TO display the border.
IF the two colours are the same THEN the border will be
displayed IN a steady colour. *)

PROCEDURE scrsetborder(coll,col2:integer);
BEGIN
rb:=chr(col1); rc:=chr(col2);
user{#bc38)
END;

(* scrgetborder returns the two colours used TO display the
border. *)

PROCEDURE scrgetborder(VAR coll,col2:integer);
BEGIN

user(#bc3b);

coll:=ord(rb); col2:=ord(rc)
END;

HiSoft PASCAL FOR THE CPC 464 LIB(xii)

5570
5580
5590
5680
5610
5620
5630
5640
5650
5660
5678
5680
5690
5700
5718
5720
5730
5740
5750
5760
5770
5780
5790
5800
5810
5820
5830
5840
5850
5860
5878
5880
5890
5900
5910
5920
5930
5948
5950
5960
5970
5980
5998
6000
60810
6020
6830

(x* scrsetflashing sets FOR how long each OF the two
colours FOR the inks AND the border are TO be
displayed on the screen. These settings apply T0
all inks AND the border. The flash periods are given
IN 1/58th OF a second (1/68th IN the USA). The
default is 10. *)

PROCEDURE scrsetflashing(pl,p2:integer);
BEGIN

rbi=chr(pt); rci=chr(pd);

user(#bc3e)
END;

(*+ scrgetflashing returns the current flash periods as
described above. %)

PROCEDURE scrgetflashing(VAR p1,p2:integer);
BEGIN

user{#bcal);

pl:=ord(rb); p2:=ord(rc)
END;

(* scrfillbox fills a character area OF the screen WITH an
ink. coll AND col2 are the left AND right columns OF the
area T0 be filled. rowl AND row?2 are the top AND bottonm
rows OF the area. Coordinates are physical coordinates. *)

PROCEDURE scrfillbox(ink,coll,col2,rouwl, rowl:integer);
BEGIN

ra:=chr(ink);

rhi=chr(col1); rd:=chr(col2);

rl:=chr(row?); re:=chr(row?);

user(#bcéé)
END;

(x+ scrcharinvert inverts a character position. ALl pixels
at the character postion that are written IN one ink
are rewritten IN the other ink. The coordinates used
are physical coordinates. *)

PROCEDURE scrcharinvert(il,i2,col,row:integer);
BEGIN

rba=chr(i1); rci=chr(i2);

rh:=chr(col); rl:=chr(row);

user(#bcka)
END;

LIB(xiii) HiSoft PASCAL FOR THE CPC 464

6040 (% scrhwroll moves the whole screen up OR down 8 pixels
6050 (one character) using the hardware. The blank Lline is
6868 filled WITH the ink parameter colour. *)

687

6088 PROCEDURE scrhuroll(up:boolean; ink:integer);

6098 BEGIN

6180 rb:=chr{ord(up)); ra:=zchr(ink);

6110 user(#bckd)

6120 END;

6130

6140 (* scrswroll moves an area OF the screen up OR down
6150 8 pixels (one character) using software. The area
6168 coordinates are given IN physical coordinates. *)

617

6180 PROCEDURE scrswroll(up:boolean;ink,coll,col2,roul, row2:integer);
6190 BEGIN

6200 rb:=chr(ord(up)); ra:=chr(ink);

6210 rh:=chr(coll); rd:=chr(col2);

6220 rl:=chr(row1); re:=chr(row?);

6230 user(#bc5@)

6240 END;

6250

6260 (% scraccess sets the screen write mode FOR the Graphics
6270 VDU. Possible mode values are

6280 B: FORCE - mode NEW=INK

6290 1+ XOR mode: NEW= INK exculsive-OR OLD
6300 2: AND mode: NEW= INK AND OLD

631% 3: 0R mode: NEW= INK OR OLD

632

6330 NEW is the final setting OF the pixel.
6340 0LD is the current setting OF the pixel.
6350 INK is the ink plotted.

6360

63;% The default is FORCE mode (mode @). *)
63

6390 PROCEDURE scraccess(m:integer);

6400 BEGIN

646180 ra:=chr(n);

6620 user(#bc59)

6430 END;

6440

HiSoft PASCAL FOR THE CPC 464 LIB(xiv)

6450 (* scrhorizontal plots a purely horizontal Lline using
6460 the current graphics write mode. *)

6470

6480 PROCEDURE scrhorizontal(ink,x1,x2,y:integer);

6490 BEGIN

6500 ra:=chr(ink);

6510 rde:=x1; rbc:=x2; rhl:=y;

6520 user(#bc5f)

6530 END;

6540

6550 (* scrvertical plots a purely vertical line using the
6560 current graphics write mode. *)

6570

6580 PROCEDURE scrvertical(ink,x,yl,y2:integer);

6598 BEGIN

6600 ra:=chr(ink);

6610 rde:=x; rhl:i=yl; rbc:=y?;

6620 user(#bcb2)

6630 END;

6640

6658 (* soundreset resets the Sound Manager; no more sounds are
6660 generated AND clear all queues. *)

6670

6680 PROCEDURE soundreset;

6690 BEGIN

67068 user(#bca’)

6710 END;

6720

6730 (x soundhold stops all sounds IN midflight. The result
6748 OF this FUNCTION is true If a sound was active. %)
675

6768 FUNCTION soundhold:boolean;

6778 BEGIN

6788 user(#bcbb);

6790 soundhold:= odd(raf)

6800 END;

6810

6820 (* soundcontinue restarts sounds after they have all been
68380 held. *)

6840

6850 PROCEDURE soundcontinue;

6860 BEGIN

6878 user(#bcb9d)

6880 END;

LIB(xv) HiSoft PASCAL FOR THE CPC 164

6980 (* soundaaddress returns the address OF the amplitude
6910 envelope given by its parameter. %)

6930 FUNCTION soundaaddress(e:integer):integer;
6940 BEGIN

6950 ra:=chr(e);

6960 user(#bcc?);

6970 soundaaddress:=rhl

6980 END;

7080 (* soundtaddress returns the address OF the tone envelope
7010 given by its parameter. *)

7030 FUNCTION soundtaddress(e:integer):integer;
7040 BEGIN

7850 ra:=chr(e);

7060 user(#bcch);

7878 soundtaddress:=rhl

7080 END;

7180 (x mcprintchar tries T0 send a character TO the Centronics
71 port. The FUNCTION returns true IF it is successful;
7120 otherwise it returns false after about B@.4 seconds. %)

7140 FUNCTION mcprintchar(c:char):boolean;
7150 BEGIN

7160 ra:=c;

7178 user(#bd2b);

7180 mcprintchar:=odd(raf)

7190 END;

7210 (* mcbusyprinter returns true IF the Centronics port
7220 1s busy otherwise false is returned. %)

724@ FUNCTION mcbusyprinter:boolean;
7250 BEGIN

7260 user(#bd2e);

7270 mcbusyprinter:=odd(raf)

7280 END;

7298

HiSoft PASCAL FOR THE CPC 464 LIB(xvi)

	pag 01
	pag 02
	pag 03
	pag 04
	pag 05
	pag 06
	pag 07
	pag 08
	pag 09
	pag 10
	pag 11
	pag 12
	pag 13
	pag 14
	pag 15
	pag 16
	pag 17
	pag 18
	pag 19
	pag 20
	pag 21
	pag 22
	pag 23
	pag 24
	pag 25
	pag 26
	pag 27
	pag 28
	pag 29
	pag 30
	pag 31
	pag 32
	pag 33
	pag 34
	pag 35
	pag 36
	pag 37
	pag 38
	pag 39
	pag 40
	pag 41
	pag 42
	pag 43
	pag 44
	pag 45
	pag 46
	pag 47
	pag 48
	pag 49
	pag 50
	pag 51
	pag 52
	pag 53
	pag 54
	pag 55
	pag 56
	pag 57
	pag 58
	pag 59
	pag 60
	pag 61
	pag 62
	pag 63
	pag 64
	pag 65
	pag 66
	pag 67
	pag 68
	pag 69
	pag 70
	pag 71
	pag 72
	pag 73
	pag 74
	pag 75
	pag 76
	pag 77
	pag 78
	pag 79
	pag 80
	pag 81
	pag 82
	pag 83
	pag 84
	pag 85
	pag 86

