
Druid & Droid
...not really a “making of”, but some thoughts

What I wanted to achieve:

I wanted to make a game that wouldn’t look and feel like the “average” CPC
game. I went for Mode 1, but with some unusual color schemes. Instead of the
blocky default 8×8 characters, I used my own antialiased, variable-width font.
I wanted to avoid slow double-buffering and lagging screen movements,
although that meant less and smaller sprites. I wanted to have several tunes
for the different missions, but all based on the same musical idea (here comes
my background as classically trained musician, which is my day job). I wanted
to include level titles, dialogues and animated cutscenes (prologue, sequences
between missions and epilogue). And last but not least, I wanted to find a nice
story for the game (possibly without violence, laser guns or spaceships) and a
concept that involves both quick reflexes and some brain work as well.

Why machine code?

Because I want to feel every single byte. And because I’m just too dumb for
higher level languages. I’m not a professional programmer, I have no idea how
dev-toolchains and libraries work. I started coding at the age of 12 with
Locomotive Basic and couldn’t really get away from spaghetti code principles
since… Also, I had this dream through my whole adolescence to really master
the Z80’s native language and write an awesome game for the CPC. But back
then, without internet and emulators, it found it really hard to develop my
skills. Nowadays, with a certain level of immersion, it was actually quite easy.
And actually a lot more fun than my attempts to learn C++ or Python. Now,
coding for CPC to me is like playing with model railways for others. I’m sure
one could write the same game in C with a lot less work and way more
beautiful code, but honestly, I couldn’t.

A matter of taste: Self Modifying Code

In my opinion: Yes. I love it and I’m afraid most of my coding wouldn’t work
without it. But I’m not a professional. Mainly for speed reasons, a lot of my
variables are in-line. I re-use subroutines for modified purposes (f.i. drawing
and then erasing) by just changing a handful of bytes directly in the code to
avoid redundant code or excessive branching. Most of the different behaviour
in some missions (swapped command in mission 6, bouncing in mission 7) is
done by directly injecting different values and opcodes into the code.

Memory optimization:

The 64K rule that everything has to be loaded at once at startup led me to
some strange design choices and to manically over-optimizing my code from
the beginning. Retrospectively, not all of it would have been necessary, but I
couldn’t estimate the size of the project when I started it.

Some of the optimization turned out nicely: I could fit all eight background
images in quite a small space by using a set of 68 16×16 meta-tiles that
consist of combinations of 225 8×8 monochrome sub-tiles. Likewise, the large
font is saved just monochrome (and compressed) and antialiasing as well as
color effects are applied on the fly. I’d like to think my level data compression
is reasonably simple but efficient. In the music as well, I could afford to have a
different tune every mission by using a lot of repeated and transposed
patterns to keep the data small. I also squeezed data in places where it doesn’t
belong but where I found empty space, f.i. where the tiles of the last mission
(epilogue) would be stored.

In other parts, I really got bogged up with my own optimization ideas: The
worst were the text shortcuts, itself a nice thing, because there’s a lot of text
in this game. But I went to far, switching the places of characters and leaving
the ASCII order just to gain a few more bytes. That lead to completely
unreadable text strings in the code and turned adding or changing text to a
nightmare. And then the decision to use a mapping for the level tiles where
each type of tile has their own bit… Yes, that’s useful for checking possible
movements and collision with enemies, but of course it reduced the total
amount of tiles greatly. I could have used a lot more and diverse tiles (also
some with additional functionality, like switches or doors) if I’d done it
differently. For now, the different platform and obstacle variants are in fact
applied by random.

And then there were some quirky ideas where I don’t know if they make sense
ore are just a spleen, like not having a proper variable for the input, sound and
monitor settings but instead xor’ing the text with a string that turns “MONO ”
to “COLOR” and then just reading the first character to decide what palette to
use…

Summary:

I spent very much time on this game. Too much, if you ask my family. There
would have been easier ways to achieve this, but I’m really happy with the
result and how I got there. Making this was a great experience.

Leonard Eröd alias arnOLdE

	Druid & Droid
	What I wanted to achieve:
	Why machine code?
	A matter of taste: Self Modifying Code
	Memory optimization:
	Summary:

