

OXFORD PASCAL FOR CP/M

USERS' MANUAL

Copyright (c) 1979/80 All rights reserved.

Systems Software (Oxford) Ltd.
16B Worcester Place, Oxford OX1 2JW, England
Telephone (0865) 54195 Telex 83147 OXSOFT

CONTENTS

I. Introduction to OXFORD PASCAL

II. Beginner's Guide to Pascal

1. Getting Started 3

2,

WRITE statements, strings

Integer arithmetic. +,-,*,DIV,MOD

Functions: ABS, SQR, ODD

Boolean Arithmetic >,<,>=,<=,<>,=,AND,OR, NOT

Pascal Statements 9

3.

Variables and assignment statements
FOR statement

IF statement

REPEAT and READ statements

CASE statement

Error messages and error correction
WHILE statement

More Variable Types 17

4.

Real numbers

Real arithmetic. /, SQRT, SIN, ARCTAN, LN,
EXP, ROUND, TRUNC.

Constants

Characters

Graphics

Arrays

Enumerated types and subranges ORD, PRED, SUCC
Sets

Procedures And Functions 24

Procedures

VAR parameters
Functions

Recur sion
Textfiles
Strings

(1)

o~ W

11
kT
12
13
14
16

17

17
18
19
19
20
21
23

24
25
26
26
27
28

OXFORD PASCAL

Advanced Features

Records

Pointers and lists
GOTO statement
Extensions

Disk-based Operation and LINKER

Command Summary

Error Messages

Sample Programs

III OXFORD Pascal Reference Manual

1.

General

Keywords, Identifiers, Symbols
Comments

Integer and Real Constants
Strings

New lines, Spaces

Data Types and Operators

Integer

Real

Char

Enumerated Types
Subrange Types
Boolean

Arithmetic Functions and Operators

Declarations and Statements

Program Format

Constant, Variable and Type Declarations

Assignment
Compound Statements
IF Statement

REPEAT, WHILE and FOR Statements

(11)

29

33

37

39

42

46

49

53

29
31
32
32

46
47
48
48
48

49
49
50
50
51
Sk
51

53
53
55
56
56
56

OXFORD PASCAL

CASE Statement
GOTO Statement

Input/Output

Textfiles
READ, WRITE etc.

Structured Data Types

Arrays

Sets

Records and Variants
Packed Arrays
Strings

Functions and Procedures

Parameters

Local Declarations
Recur sion

Forward Declarations

Dynamic Storage Allocation

NEW and DI SPOSE

Disk Files

File Declarations
RESET and REWRITE
Accessing the Printer
Disk File Examples

Extensions

Hexadecimal Constants

Memory, port and VDU Access
Hexadecimal I/0

Bit Manipulation

Catching I/0 Errors

Random Number Generator
Inputting strings

Program Chaining

DELETE, RENAME, LOGIN, LOGGED

(iii)

58

62

67

73

74

77

57
58

59

62
63
64
66
66

69
T
72
72

74

74
75
76
76

77
78
79
79
80
81
81
81
82

OXFORD PASCAL

Random access files

10. Interface Guide 86

280 Machine Code Routines
Storage Format for Variables
File Format

V. Pascal Text Editor

Clearing the Buffer
Creating Text

Errors

Printing Contents of Text Buffer
Leaving the Editor
Writing Text out to File
Reading Text fram File
The Current Line
Deleting Lines

Modifying Text

Context Searching

Change and Insert

Moving Text Around
Summary of Commands

I. Introduction to OXFORD PASCAL

83

86
87
88

88
89
89
89
90
9%
91
91
93
93
95
96
97
98

PASCAL is a powerful high level computer language written by Niklaus

Wirth of Zurich, Switzerland.*

It can be efficiently implemented on small computers as well as

large mainframes, offering numerous advantages over other
microcomputer languages such as BASIC.

Some of these advantages are:

ALGOL-1like block structure

Meaningful variable names

Powerful data structuring techniques

User-defined data types and constants

Excellent function and subroutine linkage

Recursive calls

Clean, modern flow of control

popular

Runtime error checking
Dynamic variable allocation
Greater standardisation
High speed of execution

Greater program legibility

COXFORD PASCAL is an implementation of standard PASCAL designed
specially for microcomputers. It offers all the features of this
powerful language together with some useful enhancements for the
personal computer user.

The Amstrad CP/M version for the CPC6128 and the PCW256 has two
modes of operation. In the simplest mode the Pascal compiler
co-resides in RAM with the user's program. This is ideal for
learning the language or writing small programs which do not need
the disk. Most Pascal commands are available in this mode except
those inwvolving diskette files. For more complex programs the
disk-based compiler can be used to give the full power of the
language.

* PASCAL USER MANUAL AND REPORT BY JENSEN AND WIRTH
---Springer-Verlag 1975

Some implementation information

MAXINT = 32767

type INTEGER = -32768...32767

type CHAR = the ASCII set

set values: must be in 0...127(ie set of char is allowed)

real numbers: accuracy: 6 1/2 digits
range: approx 1E-38 to 1E38

default output formats: integer : 7 characters
real : 12 characters
boolean : 6 characters
char : 1 character

string : size of string

program size and complexity: No restriction, apart from exceeding
the total memory capacity of the system (STACK OVERFLOW is printed)

identifiers: first 8 characters must be unigue

labels: first 8 digits must be unique

Extensions to standard Pascal

Dynamic specification of filenames
Input of strings

Hexadecimal numbers and hex I/0
Bit manipulation

Machine language interface

Memory , port and VDU screen access
Catchable I/0 errors

Random number generator

Program chaining

CP/M directory maintenance
Separate compilation (linking)

II Beginner's Guide to Pascal

This section is a straightforward introduction to some of
features of Pascal.

PRODUCT DESCRIPTION
Your OXFORD PASCAL package contains the following items:
1) This Manual

2) A 3 inch disk containing the following files

PASCAL, COM The Resident Pascal compiler

PAS. COM The Disc Compiler

PA SERROR. MSG The error message file

RUN.COM The Disc compiler's run time package
LINK. COM The LINKER

LOCA TE. COM The LOCATOR

PASSYS. LIB Library used by the LOCATOR

RECO VER. COM Recovery program for Pascal

l. Getting Started - Write Statements

the

We assume that you have loaded CP/M as described in Amstrad's
documentation. In order to run OXFORD PASCAL you must remove the
CP/M disc and insert the Pascal disc. The screen should display the

prampt

A>
To run Pascal, just type :
pascal

followed by a carriage return. You should get the PASCAL SIGN-ON
MESSAGE:

CGXFORD PASCAL

(c) OCSS 1985,
XXXX bytes free.
E(dit), R(un), C(ompile), L(ist), T(race) ?

Let us start right away with a very simple programming example:

Example 1

First of all you must enter the program into the computer memory,
and this is done using the EDITOR. So type the letter "e" (for
edit), followed by the carriage return key (referred to in this
manual as <return>). The computer should now respond with the
prampt:

>
Which means that you are in edit mode.

The editor has many powerful commands, but to get things moving we
will start with just one. Type:

a <return>

That is, the letter "a" followed by the return key. This tells the
computer that you want to APPEND lines of program to the computer
memory. Check each line carefully before finally entering it into
the computer using the return key. If you make a mistake, you can
erase the last key you typed by pressing the <DELETE> key. This
works right up to the time you finally press <RETURN> for each line.
‘Be especially carful about spelling and punctuation, and don't
forget that full stop at the end.

Here is the program :
begin

write ('Hi there')
end.

When you have finished typing in the program, type a line containing
just a full stop :
. <return>

This will signal to the editor that you have finished inserting
text, and you should once again get the editor prampt:

>
Now type :
g <return>

to quit the editor. The computer should now print the Pascal prampt

E(dit), R(un), C(ompile), L(ist), T(race) ?
All you have to do to run your program is to type
r<return>

If all goes well the computer should reply with something like the
following:

Compiling

Program 0 0509

0 error(s)

Compilation complete, 5736 bytes free.

Do not worry about the details, but what is happening is that the
computer is scanning your program and converting it into a numeric
form which it can efficiently execute. (If you don't get the
message: "0 error(s)", then you probably made a mistake in typing.
You could try typing "k <return>" and starting again!).

Now the computer should automatically run your program, and print
the message:

Hi there!

Once your program has been compiled, it can be run as many times as
you like by typing:

rreturn>
Each time the computer should print:
Hi there!

Now let us look at the program in more detail. The main body of a

Pascal program is always enclosed between the words BEGIN and END,
the final END must be followed by a full stop. Pascal programs
consist of a seguence of "statements”™ which are executed
sequentially in the order they are written. Example 1 has one
statement, a WRITE statement which tells the computer to write
something on the screen, in this case the message "Hi there!" The
object enclosed in the single quotes is called a STRING, and may
contain any sequence of characters except <return>., Also, if a
single quote is itself to be included in a string, it should be
doubled up, so that the Pascal program

begin

write ('O''Brien''s string')

end.
would cause the message

O'Brien's string

to be printed on the screen.

Example 2
Other things can be printed besides strings. Try the following
program. We will use the same steps as example 1 but we must
remember to erase example 1 from the computer memory. So type:
k <return>
The computer will ask :
Sure ?
Reply with :
y <return>
to confirm that you wish to erase the program.

As before, type :

e <return> (to enter the editor)
a <return> (to append new program lines)

now type example 2 into the computer:

’

begin
write (3 + 4) ;

write {6 - 2 =1}
end.
followed by
. <return> (to stop appending)
g <return> (to quit the editor)
r <return> (to compile and run the program)

When the program is run the computer should print
st

Example 2 contains two statements, which must be separated by a
semicolon. It has examples of INTEGER (whole number) arithmetic.

Now try the next example:
Example 3 multiplication and division

begin

write (6 * 7, 18 div 4, 18 mod 4, -(4 + 2) * 3)

end.
The computer should print

42 4 2 -18
In Pascal "*" means multiplication, DIV means integer division (ie
with rounding towards zero), and "18 MOD 4" gives the remainder when
18 is divided by 4.
Note how brackets have been used to change the order of evaluating
-4 + 6, or 2. This is because the computer does multiplications and

divisions before it does additions and subtractions.

Any number of items can be printed using a single WRITE statement,
provided that they are separated by commas.

Example 4 functions

begin

write (sqr (4 + 5), abs (- 44), abs (44), odd (3))
The csggﬁter should print

81 44 44 TRUE

SQR, ABS and ODD are called "functions". There are many different

functions in Pascal.

SQR, followed by a number in brackets, gives the square of the
numbe r.

ABS gives the absolute value of the number.
ODD (3) is TRUE because 3 is odd.
The last function, ODD, gives a Boolean, or logical result, that is
it can either be TRUE or FALSE. Boolean values are used a lot in
Pascal so let us look at them more closely.
Example 5 Boolean expressions

begin

writeln (true, false, 3 = 3, 3 = 4);

write (3<>4, 5<6, 9 >=10);

end.
Should print:

TRUE FALSE TRUE FALSE

TRUE TRUE FALSE
because: 3 is equal to itself

3 is not equal to 4

etec.

means "equal to"

< means "less than"

> means "greater than"

>= means "greater than or equal to"
<= means "less than or equal to"

<> means "not egqual to"

WRITELN is like WRITE but also generates a new line after printing
all the values in brackets.

Example 6 Boolean expressions

These can get a bit complicated, but the computer evaluates them
using the rules of logic.

begin

write ((3 = 3) and (3<5),(3 = 4) or (3>11));
write (not true, not false, not (1 = 2));
end.

Gives the result:
TRUE FALSE FALSE TRUE TRUE
because both (3 = 3) and(3<5) are true
neither (3 = 4) nor (3>1l) are true
(1 = 2) is false so not (1 = 2) is true
"x and y" is TRUE if both x and y are TRUE

"X or y" is TRUE if either x or y (or both) are TRUE
"not x" is TRUE if x is FALSE, and FALSE if x is TRUE.

Ch 2. PASCAL STATEMENTS

First a word about symbols. These are the building blocks of Pascal
programs, and there are three main kinds:

1. Pascal keywords, such as BEGIN and END, which are reserved and
can't be altered by the user. A complete list of these is given in
the reference manual, section 1.1.

2. Special symbols such as . ; := .. < etc.

3. Identifiers, which are names chosen by the user. They can be
any sequence of letters or digits, but must start with a letter.
For example:

i
Henrythe8th
PI

WARNING Identifiers are unigue only if they differ in the first 8
characters, so that Henrythe7th and Henrythe8th are the same
identifier in OXFORD PASCAL (and many other implementations).

Upper case letters are equivalent to their lower case counterparts
so that PI, pi and Pi are all synonymous.

Some standard identifiers such as WRITE and WRITELN are predeclared
in every version of Pascal.

These can be redefined by the user, however (in contrast to Pascal
keywords) .

IMPORTANT Pascal symbols can't contain imbedded blanks. "Henry the
8th" 1is not the same as "Henrythe8th", and "30 000" is not
equivalent to the number 30000. ("30,000" would also be illegal).
Note especially that ": =" cannot be used instead of ":=",

This aside, spaces, tabs and new lines may occur anywhere in a
Pascal program, and are ignored.

Now we return to some actual examples of Pascal programs.
Indentation is used by putting spaces in front of certain lines.
This is optional, but helps to make the program clearer to humans.

Example 7 Variables and assignment.

var X,y :integer;
begin
X:=3; y:1=27;
writeln (x,y);
X:=4;
Yi=x+2;
write (x,y, x+y);
end.

Should print:

3 27
4 6 10

The VAR declaration comes before the BEGIN, and informs the compiler
that the identifiers x and y are "variables" which can take integer
values. As the name implies, variables can change in value
throughout the execution of the program. In line 3, the value of x
is set to 3 and the value of y is set to 27. Then later, x is set
to 4 and y is set to x + 2, or 4 + 2 = 6. Notice that y:=y+2 could
also have been written setting y to 27 + 2 = 29. Variables can also
be declared as BOOLEAN and many other types besides INTEGER.

10

Example 8 repetition using "FOR" loops.

var i : integer;
begin
writeln ('going up');
for i := 1 to 5 do writeln (i);
writeln ('going down');
for i := 5-downto -1 do writeln (i);
end.

Should print:

going up

NawN -

going down

oHFNWa W

-1

The statement following the "FOR

e 5

(in this case a WRITELN

statement) is repeated once with each value of the variable i.

Example 9 "if" statements
var i =
begin
for i:=
begin
write (i);
if odd (i) then writeln ('
else writeln (' is even');
end
end.

integer;

1 to 11 do

The result should be:

odd
even
odd
even
odd

is
is
is
is
is

U W -

51

is odd')

is even
is odd
is even
is odd
is even
is odd

Howo~-do

1
1
'if" statements give the computer a choice of two statements to do,
depending on the value of the Boolean expression. (Remember, Boolean
expressions can either be TRUE or FALSE). The "else" part of a

conditional statement is optional but —--IMPORTANT-- "else" is never
preceded by a semi-colon.

The WRITE and IF statements in our example are enclosed in
BEGIN...END to make them act as a single statement to be repeated by
the FOR loop.

Example 10 finding the average

This example introduces keyboard input, and a more general sort of
loop.

var total, count, x : integer;

begin
total:=0; count:=0;
write ('Type some numbers: ');
repeat

read (x);
total:=total+x;
if x>0 then count:=count+l;
until x=0;
writeln ('The average is' total/count);
end.

When you run this program, the computer should invite you to type a
series of numbers. Try typing:

3 47 S5 199 0 <return>
The computer should reply with

The average is 6.35000E+01
The statement read (x) tells the computer to accept an integer from
the keyboard and place its value in the variable x. If you type
something the computer doesn't recognise as an integer, you might
get the message

INTEGER READ ERROR line 6

T2

and the program will terminate.

The "/" operator gives division with a floating point, or REAL
result (whereas DIV gives an integer result). More about REAL
arithmetic later.

The "real" number was printed in "scientific" notation, which will
be familiar to many calculator users. The number following the "E"
represents a power of 10, so that 6.35 E+0l means "6.35 (times 10 to
the power of +1) or 63.5.

The printing format can be changed to make it more legible by
speci fying the total number of characters you would like printed and
the number of digits after the decimal point. (Rounding is done
automatically). Thus:

Writeln ('The average is', total/count : 10 : 3)
would have printed
The average is 63.500

The number is printed with 4 leading blanks to give the l0-character
field you specified.

The "repeat”..."until"™ loop simply executes the enclosed statements
until the condition at the end turns out to be TRUE. In our example
the loop is terminated when a zero is read from the keyboard.

Example 11 Case statement

This example introduces a slightly more elaborate way of choosing
one of several statements:

var verse, i : integer;
begin
for verse:=1 to 4 do
begin
writeln;
for i := verse downto 0 do
case i of
3: writeln('three men');
2: writeln('two men');
l: writeln('one man');
0: writeln('and his dog')
end
end
end.

This should result in the printout:

13

one man
and his dog

two men
one man
and his dog

three men

two men

one man

and his dog

CASE ERROR line 7

The error message was caused because in the last verse i becomes 4
and there is no corresponding label in the CASE statement.
Case labels can also be combined, for example

4,5,6 : writeln ('Many men');

A note on error messages

The "CASE ERROR"™ message is called a "runtime" error message because
it occurs while the program is actually running. There are several
such messages which you may encounter (see section 8).

By now you may have started to experiment with your own programs.
(This is probably the best way of finding out what is and is not
possible in Pascal). If so, you will sooner or later get one of the
compiler's error messages. This may also happen if you make a
mistake in typing one of the examples. The simple program

var x : boolean;

4 integer;
begin
read (x);
write (x)
end.

Would cause the following message during compilation:

compiling

---ERROR type 46 line 2 near X
«+..IDENTIFIER DECLARED TWICE
program 0 0504

1 error(s)

Compilation complete.

The error number given was 46. There are over 100 possible errors,
and so an appropriate message is selected by the compiler from a
disk file (PASERROR.MSG), in this case: "Identifier declared twice".
Referring to the second line of the program, that's exactly what we

14

have done.

NOTE---the line number may sometimes be out by 1 line or even more,
depending on how long the compiler needed to detect the error.

Typing "L" in response to the prompt:
E(dit), R(un), C(ompile), L(ist), T(race) ?

gives a listing of the program as well as compiling it. All the line
numbers and errors are marked. In our example:

1l var x :boolean;
2 X <- ERROR 46
.. IDENTIFIER DECLARED TW ICE
X : integer;
begin
read (x);
write (x)
end.

AU s wN

The full version of line 2 is retyped underneath the error report.

The computer will not let you run a program if there are any
compiler errors.

Correcting errors

This can be done using the editor, without having to retype the
whole program, To correct the small example above you might type:

e <return>

to get into the editor. Then
2d <return>

to delete line 2. Now we can look at the whole program by typing
1,8p <return>

This will 1list lines 1 through $ ($ means the last line in the
program) :

var X : boolean

begin
read (x);
write (x)
end.

Line 1 is still wrong. We want to read and write integer, so we type

15

1 <return>

to go and display line 1. Then the command
s/boolean/integer/ <return>

makes the substitution and retypes the line.

1,$p <return> should now print the correct version of the program.
var X : integer;

begin
read (x);
write (x)
end.

Now to quit the editor and run the program all we need to do is
type:

g <return>
r <return>

The program doesn't do much, just reads a number from the keyboard
and prints it out again.

For a more complete explanation of how the editor works, see the
separate editor manual. Also see the command summary (section 7),
which explains how to load and save your Pascal program on diskette.

WHILE statement

There is another sort of loop in Pascal, besides REPEAT and FOR
loops.

The WHILE statement is like the REPEAT statement except that the
test is done at the beginning of the loop (so that the loop need not
be executed at all). Also, like the FOR loop only one statement may
be repeated (or a sequence of statements enclosed in BEGIN and END).

Example:
i:=1;
while i <= 5 do
begin
writeln (i);
i:=i+l;
end;
Has the same effect as

for i:=1 to 5 do writeln (i);

16

3. More about data types in Pascal

Example 12 - Floating point numbers.

begin
writeln (3.3, 33.0, 330.0, 0.33);
writeln (-3.3E3, 3.3E-1, 4.5+2.1)
end.

The computer should print

3.30000E+00 3.30000E+01 3.30000E+02 3.30000E-01
~-3.30000E+03 3.30000E-01 6.60000E+00

The presence of either a decimal point or an exponent (the "E" part)
in a number tells Pascal to treat it as a floating point or a REAL
number.

3.3E3 means 3.3 times (10 to the power of 3)
in other words 3.3 x (10x10x10) or 3300

Floating point numbers in Pascal have an accuracy of 6 1/2 digits
and may range in size from about 1E-38 to 1E38. In contrast to
integer, you should not expect Pascal real arithmetic to be exact.
This means, for example, that 4.0 may in fact be printed as
3.999999. Also, you can't rely on testing real numbers for equality.
2.0 + 2.0 = 4.0 may not always be true!

-xample 13 floating point arithmetic

var x, y: real;

begin
X &= 9.1;
y em 8 s

writeln (x+y: 7:2, x-y: 7:2, x*y: 7:2, xX/y: 7:2);

writéln (sqr (x) : 7:2, sgrt (x): 7:2, abs (x): 7:2);

write (trunc (x), trunc (y), round (x), round (y)):
end.

Should print:
17.80 0,80 79.1X7 1,05
82.81 3.02 9.10
9 8 9 9

We have already met +, -, * and /. They are used to mean addition,
subtraction, multipliation and floating pecint division (DIV means

17

integer division. DIV and MOD shouldn't be used with reals).
SOQR (X) means the sguare of X .
SQRT (X) means the square root of X
ABS (X) gives the absolute value of X
TRUNC (X) gives the integer (whole number) part of X
ROND (X) rounds X to the nearest integer.

Some other useful mathematical functions are

SIN (X) gives the sine of X (X is in radians)

S (X) gives the cosine of X (X is in radians)

ARCTAN (X) gives the angle whose tangent is X (in radians)
IN (X) gives the natural logarithm (base e) of X (for X > 0)
EXP (X) gives the number e raised to the xth power.

1 radian = 57.29578 degrees
e= 2.718281

Example 14 Output formatting, constants.

program waves;
const fl = 0.5; f2 = 0.05; amplitude = 19;
var x1, x2, y :real;
begin
xl:=0; x2:=0;
repeat
xl:=x1 + £fl;
x2:=x2 + £2;
y:=sin (x1) * sin (x2) * amplitude;
writeln ('x': round (y) + amplitude);
until false;
end.

The program should print an amplitude - modulated sine wave.

Because of the REPEAT..WTIL FALSE loop, example 14 will continue
printing almost forever (at least until x1 or x2 becomes too large!)
One way of stopping it would be to turn off the power, but if you
did that you would lose the program. A better way is simply to
press the ESCAPE key.

The computer should print:

BREAK AT LINE XXXXXX

Where xxxxxx is the line it happened to be executing when you
pressed ESCAPE. (If this doesn't happen, try again)

18

The "Program" header is optional in OXFORD PASCAL and in this case
simply serves to give the program a name: WAVES. ‘The name has no
significance to the computer; it's merely there as an aid to
documentation.

Any text enclosed between the pairs of symbols (* and *) is also
ignored by the compiler. This facility can be used to write comments
which help human readers to understand the program. Constants,
introduced by the keyword CONST, are values which don't change
throughout the program. It is an error to use a constant on the left
of an assignment statement or as a parameter in the READ statement.

"CONST" declarations are useful for giving names to special values
(for example PI = 3.1415926), and they make the program easier to
change later. Try using the editor to alter the frequencies fl and
f2 and the amplitude to give different wvae patterns in example 14.

Note how the program uses a field width specification (a colon
followed by an integer wvalue) to tell the computer how many
characters to allocate to the 'x' when printing. If too many
characters are asked for, enough spaces are printed to make up the
di fference. If not enough are asked for, the string is truncated on
the right, for example

write ('Hi there' :5)
would print:
Hi th

Numeric values, however, are always printed in full even if too few
characters are speci fied.

Example 15 Graphics

var line, i: integer;
begin
page;
for line:=1 to 16 do
for i:=1 to 64 do
if odd (i) then write (chr(143))
else write(chr(143))
end.

This should fill the screen with a pattern. CHARACTERS in Pascal are
strings of length 1, for example:

lxl |?l e

19

They belong to the data type "Char", which has 128 possible values
in OXFORD PASCAL, corresponding to the ASCII character set.

The function ord (ch) gives the ASCII integer code (between 0 and
127) for the character ch, while chr (x) gives the character
represented by the integer xXx. So ord ('?')=63 and correspondingly
chr(63)="'2".

NOTE - the OXFORD PASCAL data type "char" has been extended to the
range 0..255 to allow the graphics font on certain computers to be
used. Two such characters were used in the program abowve. Try
writing programs to give different patterns, using the available
characters on your machine.

The statement PAGE simply clears the vdu screen.

Example 16 Arrays

Suppose you wanted to read in some numbers and print them out in
reverse order. You would have to store the numbers somewhere because
you can't start printing until the last number has been read. If you
knew that there were always going to be three values, you could
write:

var x1, x2, x3 :integer;
begin
write ('Type 3 numbers : ');
read (x1, x2, x3);
writeln (x3);
writeln (x2);
writeln (x1);
end.

But for 50 values this would get a bit tedious!
The answer is to use an array variable:

const n=3;
var x : array [l..n] of integer;
i : integer;
begin
write ('Type ', n:l1, ' numbers: ');
for i:=1 to n do read (x[i]);
for i:=n downto 1 do writeln (x[i]);
end.

Running the program and typing the data:
463 79 980

20

Should give the result:

980
79
463

The declaration of x really declares n variables which can be
referred to by giving an index in square brackets. The elements of
the array % are thus xI11, =x[2],, xinl.

The constant n was used so that the number of values read in by the
program can easily be changed by altering just one line.

Array elements can be any valid Pascal data type, including another
array. This allows two dimensional (or indeed any dimensional)
arrays, and a chessboard for example may be represented as:

var chessboard: array [1..8] of array [1..8] of chesspiece;
Where chesspiece is some suitable data type, probably a user defined
type (more about this later). The 5th square of the 3rd row of the
chessboard could then be referred to as:

Chessboard [3] [5]
Because arrays of arrays are used often in Pascal programs, the
abbreviation "chessboard [3,5] " is allowed, and similarly in the
declaration:

var chessboard : array [l1..8, 1..8] of chesspiece;
This can be extended to arrays of any dimension.

Defining your own data type

None of the data types so far mentioned (integer, real, boolean, or
even char) would be really suitable for describing a piece on a
chessboard, so Pascal lets you define your own. This may be done in
a TYPE DECLARATION, for example:

type chesspiece = (pawn, knight, bishop, rook, queen, king);

Then a variable of type CHESSPIECE could take any of these six
values, for example:

21

var mypiece, yourpiece:chesspiece
begin

mypiece:=rook;
your piece:=queen;

Type declarations come after constant declarations and before
variable declarations. The identifiers used in an 'enumerated' data
type like CHESSPIECE must be unique, they can't appear in other
enumerated types or be declared as constants or variables.
Enumerated types are ordered so that our chess pieces can be
compared using =, > etc:

king>queen
queen>rook

and so on:

-

Three functions are also defined: PRED, SUCC and ORD

pred (x) gives the value preceeding x

succ (x) gives the value succeeding x

ord (x) gives the position of x within the data type.

(starting with pawn = 0)

so pred (bishop) = knight
succ (rook) = gqueen

but pred (pawn) and succ(king) are both meaningless
ord (knight) =1
ord (rook) = 3, and so on.

22

Example 17 The sieve of Eratosthenes.

This program finds and prints all the prime numbers between 2 and
127.

program Eratosthenes;
const n=127;
var sieve : set of 2..n;
number, i : integer;
begin
sieve := [2..n];
for number := 2 to n do if number in sieve then
begin
writeln (number);
for i := 2 to n div number do
sieve := sieve - [i*number] ;
end;
end.

A prime number is divisible only by itself and 1. Our "sieve" used
for finding the prime numbers, is a new type of variable called a
SET variable.

Sets in Pascal are collections of objects enclosed in square
brackets. Either an object is in a set or it is not, so

T1l:2:2])
[[2:3 ;1]
and [1,1,3,3,2] are all eguivalent.

The abreviation x..y in a set means all the items between x and y
inclusive, so

(1..4, 10] =1[1,2,3,4, 10]

We mn test whether an item is in a set by using the operator IN.
Thus "4 in [1..5]" will give the Boolean result: TRUE.

The type of a set can be any scalar type (ie not an array or a set)
except REAL. Values are restricted to the range 0..127 (so "set of
char" is acceptable).

Now back to our sieve program. Starting with the number 2 and
working upwards, if a number is still in the sieve then it's a
prime. We simply eliminate all multiples of that number from the
sieve because they are not prime. Operations allowed on two sets x
and y are:

X + y which gives the set of all items present in either x or
y or both.

&3

x - y which gives all items in x which are not also in y.
X * y gives all items present in x and also present in y.
X =y tests if two sets are equal

x<Oy tests if two sets are not equal.

x<=y tests if all items in x are also in y.

x>=y tests if all items in y are also in x.

4. Procedures and functions
Example 18 procedures

var ch: char;
procedure lineof (wotsit :char);
var i: integer;
begin
for i:=1 to 30 do write (wotsit):
writeln;
end; (* of procedure "lineof" *)
begin (* of main program *)
lineof ('2');
writeln;
for ch:= 'a' to '£' do lineof (ch);
end.

you don't need to type the comments (* ...*) if you don't want to.
These are there to help explain the program.

The computer should print:
v R R

888888 .censssssn
bEBbBB .o v o vamee
CCCCCC avissannavs
8a44dad &5 et
CELELE .itcscvnss
3 F & B

Procedures are used to separate sections of code from the main
program, either to make what the program does clearer by dividing it
up functionally, or to allow the same code to be "called" from
various parts of the program. The procedure "lineof" has a PARAMETER
"wotsit" (which takes the data type CHAR). When lineof is called it
must be followed by a corresponding actual parameter in brackets.
Then "lineof" simply writes a line of wotsit's on the screen.

24

If a procedure has no parameter then the brackets are omitted. The
variable I is "local" to the procedure lineof, the main program
doesn't know about it, However lineof could if necessary access the
'global' variable CH. Using local variables helps conserwve storage,
since they are destroyed when the procedure finishes. Procedures are
really mini-programs in their own right. They can have their own
constant and data type declarations and even their own procedures.

"WOTSIT" is called a VALUE parameter because a value is substituted
for it when the procedure is called. Lineof could change the value
of wotsit without affecting the main program. VARIABLE parameters on
the other hand are substituted with variables when the procedure is
called.

Example 19 Variable parameters

var x,y :integer;
procedure swap (var a,b : integer);
var temp: integer;
begin
temp:=a;
:=b;
b:=temp;
end;
begin
X:=4; y:=77;
writeln (x,y);
swap (x,y):
writeln (x,y);
end.

This should give the result

4 T
T 4

Note that it is alright to have local variables, constants and
parameters with the same names used in the main program. For example

procedure swap (var x,y : integer);
The computer won't get confused (but you might!). The variable
parameters a and b are used by SNAP as a means of returning a result
to the main program. Another way of returning a value is to define a
function.

25

Example 20 Defining a function

var i : integer;
function cube (x : integer) : integer;
begin

cube := x*x*x;
end;
begin
for i:= 1 to 20 do writeln ('The cube of ',
i 3 2;' 182, cube (i));
end.

The program should print some numbers and their cubes, Apart from:
having to specify a return value, functions are Jjust like
procedures,

Example 21 Recursion

A recursive function or procedure is one that calls itself. Using
recursion can give neat solutions to mind-bending problems like the
"Towers of Hanoi". In this well known puzzle, there are three piles
of discs. To start with piles 2 and 3 are empty, and the first pile
has a number of discs stacked in order of size, smallest at the top.
The game is to get all the discs in the same order (smallest on top)
over to the 3rd pile, moving only one at a time, with no disc ever
resting on a smaller disc.

26

program Hanoi;
var ndiscs: integer;
procedure move (source, destn, spare: 1l..3; n:integer);
begin
if n>1 then move (source, spare, destn, n-1);
writeln('Moving from', source : 2, ' to ', destn : 2);
if n>1 then move (spare, destn, source, n-1);
end;
begin
write ('How many discs ? ');
read (ndiscs);
writeln;
move (1,3,2,ndiscs);
end.

Moving one disc is trivial. To move n discs we first move the top
(n-1) to the spare pile and then move the bottom one. Then the top
(n-1) are moved using the same technique.

Recursive programs are not always the most efficient, though. They
tend to gobble up memory because the computer has to save the
variables for each call on the stack. If you make ndiscs too large
the computer will run out of memory and print STACK OVERFLOW -- line
xxxx. The same will happen if you declare more variables in a
program then you have memory available, or if you try to compile too
large a program.

Text Files

Text files are special Pascal variables having the data type TEXT
which are essentially streams of characters with no fixed size.
Three are preassigned in OXFORD PASCAL. "Input" and "output" are
associated nomally with the keyboard and the VDU display
respectively. "Printer", which is not standard Pascal, corresponds
to the CP/M list device.

By default, "Input" is implied in READ, READLN, EOLN and EOF and
"Output" is implied in WRITE, WRITELN and PAGE. So for example,

EOF is really short for EOF (INPUT)
WRITELN ('Hi!') is really short for WRITELN (OUTPUT, 'Hi!')

Each textfile has an associated buffer wvariable of type CHAR (the
file name followed by an upward arrow), for example: input”.

The procedure call:
get (input) reads the next character from the keyboard and puts
it in the variable input ~.

put (output) writes the contents of output “ to the VDU. So if X
is a character variable,

27

read (x) is equivalent to x :=input”

; get (input)
write (x) is equivalent to output”™ :=x;

put (output)

Newlines are special characters in textfiles. When a file buffer
contains one, assignments like

X := input”

will set x to a space. Also, the end of line function EOLN will
return TRUE.

READLN is like READ but afterwards skips to the beginning of the
next line by doing:

while not eoln do get (input);
get (input);

This is awkward for interactive programs because the next line of
input must be typed before the program can proceed, since input ~ is
supposed to contain the first character of the next line. 1It's
better to use READ and skip any leading spaces before you read the
next value. (This is done when reading numeric values anyway).

Initially when the program is run, input ~
typed at the end of the "RUN" command.

contains the newline you

Example 22 strings

program rewvwwords;
const linesize = 64;
type string=packed array [l..LINESIZE] of char;
var word:string;
nchars, i :integer;
procedure skipblanks;
begin while (input”™ = ' ') and not eoln do
get (input) end;

procedure swap (var s:string;i,j:integer);
var temp:char;

begin
temp:=S[i];
S[i]:=s[j];
S[jl:=temp;
end;
begin
repeat if eoln then readln;
ski pblanks;
while not eoln do
begin

nchars:=0;

28

repeat
nchars:=nchars+l;
read (word [ncharsl);
wmtil input® ="' ';
for i:=1 to nchars div 2 do
swap (word,i,nchars -i+l);
write (word:nchars, " ');
end;
writeln;
writeln;
until false
end.

The program reads words and writes them
reversed. For example

Mary had a little lamb <return>
would print

yraM dah a elttil bmal
To stop the program, hit <escape>.
Strings of size n in Pascal are treated as

char™".
optimize storage.

out with the letters

"packed array [l..n] of

Packed arrays are like ordinary arrays but are compressed to
Packed array ELEMENTS can't be used directly as

VAR - parameters (but whole arrays can, as in the example).

Examples of string operations in Pascal:

var str: packed array [l1l..4] of char;
begin

str:="when';

writeln (str>'what')
end.

Would print TRUE because "when" is greater than "what"

(Lexographically, i.e. dictionary order).

5. Advanced features

Example 23 Records

Program clock;
const delay = 500;
var i:integer;

(* approx.

clock: record
hours: 0..23;
minutes, seconds :0..59;
end;
begin

write ('Enter the time, in hours minutes seconds :

29

for Triton *)

*);

read (clock. hours, clock. minutes, clock. seconds);
with clock do repeat
for i:= 1 to delay do (*nothing*);
seconds:=(seconds + 1) mod 60;
if seconds=0 then
begin
minutes:=(minutes+l)mod 60;
if minutes=0 then
hours:=(hours+l)mod 24;
end;
writeln (hours:1l,':' minutes:1,':',seconds:1);
until false;
end.

The program should print out the time roughly every second, for
example:

Enter the time, in hours minutes seconds : 1 39 56

Should print:

IV 339 357

1°% 39" 58

S A T W i

1840 " = 0
etc

Records are a way of combining sewveral conceptually related
variables into one structure. The record can then be treated as a
whole or the parts can be accessed individually using the dot
notion.

The WITH..DO statement tells the computer to treat the elements of
"clock" as though they were locally defined individual variables for
that statement, removing the need for the"clock." prefix.

Record elements can be any type (for example other records or

arrays), and in addition an optional "variant" part is allowed (see
reference manual).

30

Example 24 Pointers

var p,q : = integer;
begin

new (p); new (q);

p~ :=3;

q” :=4;

write (p~,q");
end.

Should print

3 4

The variables p and g are not integers but 'pointers'

to integer

variables. The actual space for the variables to be stored at is
created "dynamically" (in other words while the program is running)
by the procedure NEW. This allows programs to create variables as
required. A major use of pointers is in processing linked lists:

—xample 25 Reversing a line of characters using a list

program revchars;
type itempointers="item;
item = record
value:char;
next: itempointer
end;
var list,p: itempointer;
begin
list:=nil;
repeat
new (p);:
read (p~.value);
p~.next:=1list;
list:=p;
until eoln;
repeat
write (p~.value);
p:=p .next;
until p=nil;
end.

The input: Mary had a little lamb.

Should give the result: bmal elttil a dah yraM

This program defines a record containing a pointer to itself. (A
recursive definition). Linked lists give wvery flexible storage but

you have to keep careful track of what points to what.

31

In standard Pascal the procedure DISPOSE (P) releases the storage
assigned to the pointer p~ and can be used when p~ is no longer
needed.

In OXFORD RESIDENT PASCAL, dispose has no effect. (However, it is
usually possible for programs themselves to implement some sort of
"free list" of unwanted items). The Pascal keyword ™il" is a
pointer value which points to no variable.

Example 26 "goto" statements

label 294, 33;
begin
33: writeln ('This should be printed');
goto 294;
writeln ('This shouldn''t');
294: writeln ('Stuck in a loop');
goto 33
end.

This should print:

This should be printed
Stuck in a loop

This should be printed
Stuck in a loop

etc.

"labels" used with goto statements must be integers and should be
declared before constants, data types and variables. GOTO'S should
be avoided where possible because they destroy the structure of the
program. A common use, however, is for "disaster" exits from nested
procedures or statements. Jumping INTO a loop or a procedure will
cause unpredictable results.

Extensions to standard Pascal

These are described in the reference manual, sections 10. One useful
procedure is VDU:

32

Example 27 "poking" the vdu screen

var i: integer;
begin page;

for i:=1 to 40 do vdu (i mod 4,i,'x"');
end.

This should produce a pattern of x's on the screen. Vdu (i,j,ch)

stores the character ch at row i, column j.
Remember, PAGE clears the VDU screen

6. Disk based operation

So far this manual has been concerned only with using the resident .
compiler, which is always in RAM. While this may provide an ideal
environment for learning Pascal, it necessarily restricts the number
of commands available, and the space remaining for user programs.

As you become familiar with Pascal, you will probably want to write
larger programs. Using the disk-based compiler and linker, Pascal
programs of thousands of lines may be run, and this may be extended
even further by using program chaining.

Although your Amstrad computer has only a single disc drive it is
possible to simulate the existance of further drives by swoping
discs. This feature is described more fully in Amstrad's
documentation however, in general it is possible to issue commands
which assume a second drive. Whenever such a command is issued the
operating system will ask you to change discs. In the remainder of
this manual therefore, we will refer to drives A and B as if these
actually existed. Whenever a change of disc is required, the
operating system will prompt you to do so.

The disk-based compiler operates directly on CP/M disk files and
provides a superset of the facilities of “"resident Pascal",
including a full set of disk commands.
Pascal source files may be created using the CP/M editor "ED", or
you can use programs edited in resident mode and saved on disk. The
source file name should end in the extension ".PAS", for example:
MYPROG. PAS
Then, in response to the CP/M prompt :
A>

the command:

pas myprog

33

will compile the textfile MYPROG.PAS and produce a relocatable
object file MYPROG.OBJ, as well as a listing file MYPROG.PRN which
includes line numbers and error messages.

The compiler output should be something like :

Pascal compiler v xX.x
(c) Copyright OCSS 1985

program 0 0009
0 error(s)
Compilation complete.

The object file can be loaded and run simply by typing:
run myprog

Note that we have assumed that the files PAS.COM, RUN.COM are
present. In addition the file PASERROR. MSG must be on the CURRENTLY
LOGGED DISK (in this case disk A:).

The name of each procedure or function is printed out as it is
compiled, together with its static nesting level (0 for the main
program, 1 for outer level functions and procedures, and so on). A
hexadecimal address is also printed, giving a rough idea of its
relative position in memory

An extended form of the compile command is:
pas myprog. abc

where : "a" is a letter denoting the disk drive on which the souce
file resides (A, B etc). "b" is the disk drive to which the object
file is to be sent (Z = no object file generated). "c" is the disk
drive to which the listing is to be sent (X = send to console, Z =
no listing file generated).

This allows large programs to be compiled more quickly by skipping
the listing, for example :

pas myprog. aaz

A compact compilation, without any line numbers or variable range
checks generated in the object code, may be specified by typing a
"-" before the carraige return, for example:

pas myprog -

or
pas myprog.abz-

34

The following table summarises the differences between resident and
di sk mode:

Resident Mode Disk Mode
Compiler always in RAM Compiler only in RAM during
a compilation
Built-in Editor Separate Editor
Pascal source and object Source and object code
code in RAM held in disk files

Language differences (see reference section for details):
Console and printer only All file types supported
Disk files fully supported
PACK, NPACK implemented
DISPOSE is a no-op DISPOSE fully implemented
Program chaining allowed
Linker
For large programs it is desirable, (and when compiling on small
systems often physically necessary) to have some form of
modularization. Several Pascal source files with inter dependent
functions and procedures may be compiled separately and their object
files later "linked" into one file. The "locate" command may also be
used to produce directly executable CP/M command files.
Examples:
link prog=myprog your prog anyprog
links the files MYPROG.OBJ, YOURPROG.OBJ and ANYPROG.OBJ

into one object file PROG.OBJ

Restrictions

(a) The programs being linked must have identical wvariable
declarations at the outer program level.

(b) Each outer-level function or procedure may only be defined
in one file.

35

(c) If the other files need to refer to this function or
procedure, a duplicate header should be included, with the body
replaced by the keyword "extern".

(d) The first file in the list is assumed to contain the main
program. (The other files would nommally just contain a dummy main
program:

begin
end.

Linker example:

file fl.pas:
program test (input, output);
var i: integer;
procedure x; extern; (* x is defined in the other file ¥)
procedure y;

begin
write (i)
end;
begin (* main program *)
x
end.

file £2.pas:
program testpart2(input, output);
var i : integer; (* var's must be identical to fl *)
procedure y; extern; (* y is defined in fl *)
procedure x;
begin
i:=3;
write ('three =');y;
end;
begin
end.
The command sequence might be
pas fl
pas f2
link test=fl,f2
run test

The progran should print "three = 3"

36

Including other files in a compilation

If the character "£", followed immediately by a diskette file name,
is placed at the beginning of a pascal source line, then this
indicates to the compiler that the contents of the specified file
are to be included at that point in the program.

This is extremely useful when program segments are to be linked, as
global declarations (which need to be the same in each segment) can
be kept in a separate file thus simplifying any alterations.

The facility cannot be nested (the included file must itself contain
no £filename's).

Locate - make an executable (.COM) file which can then be run as a
normal CP/M command by just typing the program name.

example:
locate jane

Creates an executable file JANE.COM from JANE.OBJ, which may then be
executed by simply typing:

jane

NOTE - "locate" requires the library file PASSYS.LIB to be present
on the currently logged disk.

7. Command Summary for Resident Mode.

Commands may be typed in either upper or lower case. Each line you
type should be followed by <return>

E - invokes the editor (see separate documentation)

E filename - enter the editor, but first replace the program text by
the contents of the specified file. The filename extension defaults
to ".PAS".

R - runs an edited program (after first compiling if necessary).
Starts running from the current line (usually line 0).

R XXXX - runs a program from the current line stopping at line xxxx.
Source line xxxx should be executable code (not declarations).
Unfortunately, due to the recursive nature of the compiler, the
correspondence between line numbers and the actual source text is
not always exact.

T Xxxxx - traces xxxx lines of source code (printing out the line
numbers executed). Default one line traced.

37

I - initialise the stack, setting the current source line back to 0.

W - print out the current line number and the number of free bytes
available.

C (or C-) - compiles an edited program. If the parameter "-" is
given the program is compiled without any line numbers or variable
checks in the object code. This more compact and will run slightly
faster, but T(race) will not work, and no line numbers will be given
with runtime errors.

L (or L-) - eguivalent to C but generates a listing with 1line
numbers on the console.

P (or P-) - as L but the listing is directed to the CP/M list device
(printer).

H dddd - prints the decimal value dddd in hexadecimal form on the
console.

D xxxx - prints the hex number xxxx in decimal fomm.

F - list the files in a diskette directory, using the syntax of the
CP/M "DIR" command, for example:

f - lists all files on currently logged disk
£ bz - lists all files on disk B
f *.pas - lists all files with the extension ".PAS"

FW filename - writes the editor buffer to the disk file named (file
extension defaults to ".PAS")

FR filename - reads the named file into the editor buffer (file
extension defaults to ".PAS")

FD filename - deletes the named file from the disk.

K - clears the editor buffer. The message "Sure ?" is printed. Type
"y" to confim , anything else leaves buffer intact.

S filename - saves current OBJECT code in the named disk file.

G filename - read object code from the named file, so that it may be
run without re-compiling. This command destroys any source or object
text currently in memory.

NOTE - S and G only save executable code. It is a good idea to save

the PASCAL source code too using the FW command, in case you want to
modi fy the program later.

38

Disaster Recovery Program

The program RECOVER. COM re-enters PASCAL without clearing the text
buffer, provided that the contents of the memory have not been
changed by intervening commands. This is invaluable for recovering
from unexpected BDOS errors or unintentional CTRL-C's !

Special Function Keys

ESCAPE - this key interrupts a program while it is running.
Execution may be resumed using the R or T commands.
ESCAPE may also be used to stop a compilation.

CTRL-S - suspends execution of a program (resume by pressing any
key) .
CTRL-C - at any time returns you to CP/M

DELETE - deletes an input character
CTRL-U - deletes a line of input

CTRL-2 - sets EOF (input)-to be true.

8. ERROR MESSAGES

RUNTIME ERRORS

1. STACK OVERFLOW - (during compilation)program is too big

- (during execution)
program needs too much variable space or uses too many levels of
recur sion.

2. INTEGER READ ERROR - an integer was expected from the keyboard.
35 INTEGER OVERFLOW - overflow when multiplying two integers, or
DIVing or MODing by =zero, or TRUNCing or ROUNDing too large a

number,

4. ARRAY INDEX ERROR - an expression used to index an array is
outside the declared range.

5. VARIABLE OUT OF RANGE - a variable, or a procedure or function
parameter has been given a value outside the allowed range for that
data type.

6. CASE ERROR - there is no case in a case statement corresponding

39

to the value of the selection expression,

7. BAD PCODE - your program has been corrupted,or (hopefully not) a
system bug.Occuring at random, this may indicate a memory fault.

8. SET VALUE ERROR - a set element has gone outside the range
0,127

9. FLOATING POINT OVERFLOW - may occur if the result of + - x / SQR
or EXP is too large.

10. FLOATING POINT READ ERROR - a floating point constant was
expected from the keyboard.

11. WNDEFINED GOTO - a GOTO statement referenced a non-existent
label.

12. COMPLEX LOG OR SQUARE ROOT - attempt to take the log or square
root of a negative number, or the log of zero.

13. FILE NOT OPEN FOR READING - READ or GET without a reset first.

14. FILE NOT OPEN FOR WRITING - WRITE or PUT without a rewrite
first.

15. END OF FILE - attempt to read a file with EOF true.

16. FILE DOES NOT EXIST - during RESET the specified file cannot be
found on the disk.

17. NO SPACE IN DIRECTORY - during RBARITE or OPEN the CP/M maximum
directory size (nommally 64 files) has been exceeded.

18. ERROR IN WRITING TO DISK - during PUT or WRITE. Almost always
means the disk is full up.

19. ILLEGAL FILENAME -~ during RESET, REWRITE or OPEN.
20. FILE NOT OPEN FOR RANDOM ACCESS - attempt to do a SEEK on a file
without an OPEN first.

Compiler Error Messages

Bad (i.e. non-Pascal) character.

Bad hex digit.

Line overflow (must be <80 characters).

Array index type must be a scalar (and can't be real).
Argument of PUT or GET must be a file

Bad pointer declaration.

'THEN' expected.

O~ U wN -

40

9 Subranges must be a scalar type other than real.

10
11
12
13
14
15
16
17
18
18
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34
a8
36
37
38
a9
40
41
42
43
44
45
46
47
48
49
50
L4
h2
53
54
55
56
57
58

Type mismatch in subrange definition.

Type mismatch in assignment statement.

Function return value must be a scalar, pointer or a file.

Constant expected.

Can only apply '+' and '-' to real and integer values.

'.." expected.

Upper bound of subrange is below lower bound.

Identifier is not a constant.

'"PACKED' can only be applied to a structured type.

Tag field type must be scalar (and can't be real).

Record variant label is the wrong type.

Procedure/function call has too few arguments.

Procedure/function argument does not match declaration.

Procedure/function call has too many arguments.

Type mismatch within an expression.

* / + - can only be applied to INTEGER or REAL data.

DIV and MOD can only be applied to INTEGER data.

Pointers may only be tested for equality.

< > <> <= >= = may only be applied to pointers, sets,
strings and scalars

AND, OR may only be applied to boolean data.

NOT may only be applied to boolean data.

Not a function.

Error in floating point constant.

'(' expected after PUT or GET.

Illegal expression.

Variable expected.

Array index type doesn't match declaration.

Index on non-array.

Record field not found.

Not a record.

Not a file or pointer.

Boolean expression is required after 'IF'.

'WITH' statement: variable must be a record.

Case label is the wrong type.

'FOR' loop variable must be a scalar (and not REAL).

'FOR' loop : expression is the wrong type.

Identifier declared twice.

INTEGER constant expected after 'EXTERN'.

Set element has the wrong type.

Identifier expected.

':' expected.
'=' expected.
';' expected.
')' expected.

'BEGIN' expected.

'UNTIL' expected.

'DO' expected.

':=" expected.

'TO' or 'DOWNTO' expected.

41

59 'OF' expected.
60 Bad case label value.
61 'END' expected.
62 'NEW' argument must be a pointer variable.
63 '"WRITE'/'WRITELN': field width must be an integer expression.
64 '"WRITE'/'WRITELN': can only write INTEGER, REAL, CHAR,
BOOLEAN or string.
65 '"READ'/'READLN': can only read INTEGER, REAL or CHAR variables.
66 '(' expected after NEW.
67 PRED, SUCC and ORD can only be applied to scalars
other than REAL.
68 Undeclared identifier.
69 ABS and SQR can only be applied to integer and real data.
70 CHR : argument must be an integer.
71 EOLN : argument must be a textfile.
72 Illegal statement.
73 Packed array element can't be used as a name parameter.
74 '[' expected.
75 ']' expected.
76 '.' missing at end of program.
77 Missing terminator (probably one of END, ';', INTIL or ')').
78 End of source file reached.
79 Boolean expression required after UNTIL.
80 Boolean expression required after WHILE.
8l Variable name expected after 'FOR'.
82 '("' expected after READ or WRITE.
83 ">', '¢'" : strict inclusion not allowed for sets.
84 Right hand side of IN must be a set.
85 Left hand side of IN must be a scalar matching base type of RHS.
86 Argument to 'PAGE' must be a textfile.
87 Base type of a set must be scalar (and can't be REAL).
88 Type incompatibility in relational expression (<>, = etc.).
89 Label must be an unsigned integer.
90 Label was not declared in a LABEL declaration.
92 Multiple label definition.
93 'FOR' variable can't be a structure member.
94 ',' expected.

9. Sample programs

Example 1

The character 'o' should appear to "bounce" around the VDU screen.
As a variation, try deleting line 13 to produce a pattern on the
screen.

1

2 program bounce (input,output);
3 const thecowscomehame = false;
4 DELAY = 30;

42

S var row, col, i, j, 4 : integer;

6 begin

7 row := 0;

8 col := 0;
r

9 i :=1; j:=1;

10 page;

11 repeat

12 for 4 := 1 to DELAY do;
13 vdu (row, @l; " ");

14 col := col+j:
15 row := row+i;
16 if (row > 15) or (row < 0) then begin

17 begin

18 i= =-i;

19 row := row+i+i;
20 end;

21 if (col > 63) or (col < 0) then
22 begin

23 1 ==

24 col := col+j+j;
25 end;

26 vdu (row, col, .'0');
27 until the cowscomehame
28 end.

29

Example 2 The game of Nim

1 program nim;

2 const NROWS = 16;

3 delay = 1000;

4 coin = "t

5 var pile : array [1..3] of 0..NROWS;

6 move : record

i ntaken, pileno : integer
8 end;

9 i : integer;

10 key : char;

11 function gameover : boolean;

12 begin gameover := (pile[l] + pile [2] + pile [3]
13

14 function asc (n : integer) : char;

15 begin asc := chr (n + ord ('0')) end;

16 procedure display;

17 var p, row, col, firstcol : integer;
18 begin

19 page;

20 for p :=1 to 3 do

21 begin

43

end;

22

24

25

26

27

28

29
div 10));
30

34 end;

firstcol := p*10 + 28;
for row :=0 to NROWS-1l do
if pile [p] >= NROWS-row then
for col := firstcol +3 to
firstcol+5 do
vdu (row, col, QOIN);
if pile [p] >= 10 then
vdu (NROWS-1, firstcol, asc (pilelp]

vdu (NROWS-1, firstcol+l, asc (pilel[p] mod

end

36 procedure signon;

3T
38
39
40
41
42
43
44
45
46
47
48
49
50
51

begin
page;

writeln (' *kk NIM *%%1)

writeln
writeln

I

s

writeln ('I will set up three piles of coins ');
writeln ('To move, take any number of coins away');
writeln ('from any pile. The player who clears');

writeln
writeln

.
I

('"the screen wins. ');

write (' Now hit any key to start : ');
while getkey = chr (0) do;

end;

52 procedure hismove;

53
54
55
56
57
58
59
60
61
62
63
|);
64
65
[pilenoll;
66
67
68

var ok
begin

-

boolean;

writeln ('Now enter your move :');
with move do repeat

writeln;

write ('Pile (1,2 or 3)? ');

read (pileno);

ok := pileno in [1..3];

if ok then

begin
write ('Number to take away ?

read (ntaken);
ok := ntaken in [l..pile

end;
if not ok then writeln ('What 2?');

4

69 until ok;

70 with move do pile [pileno] := pile [pileno]
71 - ntaken;

72 end; (* of hismove *)

73

74 Procedure mymove;

75 wvar bit : array [l..

3, 1..4) of boolean;

76 parity : array [l1..4] of boolean;

77 firstbit, x, i, j : integer;

78 begin

79 for i := 1 to 3 do

80 begin

81 x :=pile [i];

82 for j := 4 downto 1 do

83 begin

84 bit [i, J] := odd (x);

85 x = x div 2;

86 end;

87 end;

88 for i := 1 to 4 do parity [i] :=

89 bit [1;i) © (bit [2,i] < [3,21);

90 move.pileno := 1;

91 move.ntaken := 0;

92 with move do

93 if not (parity [l] or parity [2] or parity
94 [3] or parity [4])then

95 begin

96 while pile [pileno] = 0 do pileno
97 := pileno + 1;

98 if pile [pileno] =1 then ntaken:= 1
99 el se

100 ntaken := random mod (pile
[pileno]-1)+1

101 end

102 else begin

103 firstbit := 1;

104 while not parity [firstbit] do

105 firstbit := firstbit + 1;
106 while not bit [pileno, firstbit] do
107 pileno := pileno + 1;

108 for i:= firstbit to 4 do
109 begin

110 X = 1;

111 for j := 3 downto i
do xi= x*2;

112 if parity [i] then
113 if bit [pileno, il
then ntaken

114 := ntaken + x
115 else ntaken 1=

ntaken - x;

45

116 end

117 end;

118 with move do pile [pileno] := pile [pileno]
119 - ntaken;
120 end; (* of mymove *)

121

122 begin

123 signon;

124 repeat

125 for i:= 1 to 3 do pile [i] := random mod 10 + 6;

126 display;

127 repeat

128 hismove;

129 if gameover then writeln ('Congratulations
suaYoa wint™)

130

131 else begin

132 display;

133 mymove ;

134 for i := 1 to delay do;

135 display;

136 writeln ('My move was ', move.ntaken
137 :3,' from pile', move.pileno :2);
138 if gameover then writeln ('*** T
win.')j

139 writeln;

140 writeln;

141 end;

142 until gameover;

143 write ('Another game ? ');

144 while input® = ' ' do get (input);

145 read (key);

146 while not eoln do get (input);

147 until key = 'n';

148 page;

149 end.

150

PART III OXFORD PASCAL reference Manual

This manual is intended to be used for quick reference by those
familiar with Pascal or a similar programming language.

1. General

1.1 Pascal keywords

These are reserved words in Pascal and cannot be redefined. They

L6 <>

X FORD PASCAL

must be written without embedded spaces or newlines. A complete list
is:

and do function nil program type
array downto goto not record until
begin el se it of repeat var
case end in or set while
const file label packed then with
div for mod procedure to ’

1.2 Pascal identifiers

These are names chosen by the programmer for variables, constants
etc., and should consist of at least one letter, followed by zero or
more letters or digits. Upper and lower case letters are equivalent.
Identifiers should be unigue in the first 8 characters, and must not
contain embedded blanks.

The following identifiers are standard (but may be redefined):

abs eoln new read sgrt
arctan exp odd readln succ
boolean false ord real text
char get out put reset true
chr integer pack rewrite trunc
cos input page round unpack
dispose in pred sin write
eof maxint put sqr writeln

(see also section 9 - extensions).

1.3 Other Special symbols

'(apostrophe)

VA

VNI NN
wn me e

I~ %1 +

(*
*)

A

These symbols should not contain embedded blanks.
1.4 Comments

Pascal comments are enclosed between the composite sysbols (* and
*)ee

Comments are totally ignored by the compiler. They can contain any
characters except the corresponding closing delimiter or. "%)8,

47 <>

QX FORD PASCAL

1.5 Constants

Integer constants

These consist of an unsigned sequence of digits, for example
33 0001 O
No check is made to ensure that the value is less than 2%**15.
Integer constants must not contain embedded blanks or commas (see
also section 9(a) on hex constants).
Real constants
These are of the fomm:
<integer part> . <fractional part>
or <integer part> E <exponent>
or <integer part> . <fractional part> E <exponent>
The integer and fractional parts are non-null strings of digits. The
"E"™ may be in upper or lower case in OXFORD PASCAL. The exponent is
a digit string which may be preceded by a sign [+ or -].
Real constants must not contain ANY embedded blanks.
Examples:
3.14159 4E-9 -387.4E11
1E+30
A real constant which is out of range (greater than about 1E38) will

cause an error.

Character and string constants

These are enclosed in single quotes, and may contain any character
except a newline. Single gquotes are included in a string by writing
them twice.

Examples:
'c', '§', "''' (character constants)
'Hi there!', 'Fred''s string' (string constants)

(see also section 9(a) on hex constants).

L8 <>

QX FORD PASCAL

1.6 Blanks
Any number of spaces, tabs or newlines may separate two keywords,

identifiers, constants or other symbols, but at least one blank is
required between adjacent keywords, identifiers and numbers.

2. Data types and operators

2.1 Integer

Pascal integers are whole numbers in the range - MAXINT to + MAXINT,
where MAXINT is an implementation defined constant (32767 in OXFORD
PASCAL) .

OXFORD PASCAL stores integers in 16-bit 2's complement form, so
integers may range from -32768 to +32767.

Integer operators are

+ addition

- subtraction

* multiplication
div integer division (result is rounded towards zero)
mod remainder operator

- (unary operator) negation

+ and - produce 2's complement results mod 2**16.
*, div and mod are defined only on values in the range
-MAXINT..MAXINT, and the result must be in this range (otherwise an
error occurs).
Division by zero causes an error.

zmed ¥y = x — ((x-diviy) * y)
2,2 Real
Real numbers in OXFORD PASCAL are held in floating point binary form
with a 23-bit mantissa (6 1/2 digits). The exponent can range from
=38 to +38.

The operators +, -, * behave as for integers, but produce a REAL
result. (Which will cause an error if it is out of range).

The operator / denotes floating point division. Division by zero
will cause an error.

Integer expressions and constants can be used wherever a real

expression is acceptable, but real values can't be used with DIV or
MOD.

49 =

X FORD PASCAL

Conversion from real to integer is done by the functions TRINC and
ROUND (section 2.8).

2.3 Char

The Pascal data type “"char"™ operates on an ordered set of
characters. In OXFORD PASCAL the 128- character ASCII set is used.
(Extended to 256 characters to include the graphics characters
available on some machines).

In all implementations of Pascal the digits '0' to '9' are
guaranteed to be ordered and contiguous, and the letters 'A' to 'Z'
are ordered (but not necessarily contiguous).

The standard functions ORD and CHR convert from character to integer
and back.

For example, in OXFORD PASCAL
ord ('A') = 65
chr (36) = '§!
Also, succ(x) gives the next character after x, and
pred(x) gives the character before x, for example
succ('3') = "4’
pred('l') = "0’
Note that in OXFORD PASCAL succ (chr (255)) and pred (chr (0)) are
undefined, and chr (x) with x outside the range 0..255 is not
allowed.

2.4 User-defined (enumerated) types.

These are usually defined by means of a TYPE declaration (section
3.2) for example:

type day = (monday, tuesday, wednesday, thursday, friday,
saturday, sunday);

colour = (RED, GREEN, BLIE);

The data type "day" then has seven ordered values represented by the
identifiers MONDAY, TUESDAY, etc.

The type "colour" has three values. The functions ORD, SUCC and PRED

may be used on these types (see the previous section). For example:
succ (wednesday) = thursday
pred (green) = red
ord (monday) =0
ord (green) =1

50 <>

X FORD PASCAL

ord (sunday) =6
2.5 Subrange types

The user may define subranges over any scalar type except REAL.
Examples:

type year = 1970..1990;
weekday = monday..friday;

These types have the same properties as their parent types but often
occupy less storage space. Values are checked at runtime to see
that they fall in the required range. They also act as a convenient
means of documentation.
2.6 Boolean
Boolean values in Pascal are represented by the standard identifiers
TRUE and FALSE. In fact the data type Boolean may be thought of as
resulting from the declaration:

type boolean = (false, true)

so that true>false The boolean operators defined in Pascal are:

and . logical "and" operation
or —— logical "or" operation
not — (unary operator) logical negation.

The relational operators

- less than

= greater than

- egual to

less than or equal to
- greater than or equal to
not equal to

AVA VA
]
1
1

L |
|
|

may be used with any scalar data type (integer, real, Boolean, char,
user-defined), and give a Boolean result. They may also be used to
compare strings (section 5.)

2.7 Operator precedence

The relational operators
< > <£=>= = <> in (see section 5)
have lowest precedence, followed by

- - or

51 <>

then
o

div

mod

GXFORD PASCAL

and

and finally the unary operator

not

Evaluation is otherwise left to right,

parentheses,

(x>3) and (y=2)

and can be changed by using
Particular care should be taken with expressions like:

This would be illegal if the parentheses were omitted.

2.8 Summary of arithmetic and conversion functions

FUNCTION PARAMETER RESULT MEANING
abs (x) integer integer absolute value
abs (x) real real absolute value
sqr (x) integer integer sgquare
sqr (x) real real square
sgrt (x) real or integer real square root (x>=0)
In (x) real or integer real natural logarithm
(x>0)
exp (x) real or integer real e raised to the xth
power
sin (x) real or integer real sine (x in radians)
cos (x) real or integer real cosine (x in radians)
arctan (x) real or integer real arctangent (0 to PI
radians)
trunc (x) real integer convert real to
integer by truncation
towards zero
round (x) real integer convert real to

52

integer by rounding

<>

X FORD PASCAL

chr (x) integer char convert ASCII value
odd (x) integer Boolean TRUE if x is odd
ord (x) scalar * integer position within a
data type
pred (x) scalar * scalar preceding value in a
data type
succ (x) scalar * scalar next value in a
data type

(* can't be real)

3.1 Pascal declarations and statements

Pascal Programs

A Pascal program takes the fom:

program header

label declaration part

constant declaration part

type declaration part

variable declaration part

function and procedure declarations
BEGIN

executable statements

END.

The declarations are all optional. Label declarations are discussed
in section 3.12, functions and procedures in section 6.

The program header is optional in OXFORD PASCAL. If it is included
it consists of the keyword PROGRAM followed by a name (which can be

any valid identifier) followed by a list of identifiers in brackets,
for example:

program joe (input, output);

"Input" and "Output" are external files used by the program "joe"
The header is terminated by a semicolon.

The final full stop after the program "end" is always required.

3.1.1 Constant declarations

These are used to assign values to identifiers which will not change
throughout the program. They facilitate modifications to the

53 <>

GXFORD PASCAL

program and provide a means of documentation.

The keyword "const" if followed by one or more declarations of the
form

identifier = value;
"value" may be a signed or unsigned integer, real, a Boolean,

character, string, a member of an enumerated type or a previously
defined constant identifier.

Examples:
const message = 'hi therel!l';
ch = '$';
PI = 3.14;
MINUSPI = -PI

3.2 Type declarations

These are used to make an identifier synonymous with a given data
type. The keyword "type" is followed by one or more declarations:

identifier = datatype;

examples
type suit = (SPADES, HEARTS, DIAMONDS, CLUBS);
int = integer;
byte = 0..255;

3.3 Variable declarations

In Pascal all variables must be declared explicitly. This is
sometimes annoying but makes the programmer's intention clearer and
helps the compiler to detect errors.

The word "var" is followed by one or more declarations:
identifier list: datatype;
Examples

type day = (monday, tuesday, wednesday, thursday, friday):
var X,y:real;

i {integer;

switch: Boolean;

today, tomorrow, payday:day;

favouritecolour (BLUE, RED, GREEN, PINK);

date : 1970..1990;

54 s

CGX FORD PASCAL

The variables denoted by these identifiers can then take any of the
allowed values for the corresponding data type.

3.4 Executable statements

The executable part of a Pascal program enclosed by the keywords
BEGIN and END, consists of zero or more sequentially executed
statements separated by semicolons. Redundant semicolons are always
accepted and generate no code. There is no need for any
correspondence between the logical structure of statements and their
physical layout. Well formmatted programs with one statement per
line are easier to read, however.

3.5 MAssignment statements

The form of this statement is:
variable := expression

Where the left and right hand sides must have compatible data types.
This means that they must arise from the same type identifier, or be
declared as variables in the same declaration. Exceptions are if the
variable type is a subrange of the expression type, or they are sets
with compatible base types, or if the left hand side is real and the
right hand side is integer.

The value of the variable is set to the value of the expression, and
future references to the variable will yield this value.

Examples:
X := 3/sqrt(36) x is set to 0.5
y = x+4; y is set to 4.5
y 1= y-2 Yy is set to 2.5

x and y are "real" variables.

55 <>

(X FORD PASCAL

3.6 Compound statements

The construction:
BEGIN
Sequence of statements separated by semicolons
END

behaves as a single statement, which when executed causes the
execution of all the enclosed statements in seguence.

3.7 "If" Statements

The statement

"IF Boolean expression THEN statement 1" causes statement 1
to be executed only if the expression is TRUE. Alternatively, "IF
Boolean expression THEN statement 1 ELSE statement 2" causes
statement 2 to be executed instead if the expression is FALSE.

IMPORTANT - no semicolon may be placed before the ELSE.

Statement 1 and statement 2 can be any Pascal statement, including
another IF statement: if x then if y then sl else s2

is taken to mean

if x then
begin
if y then sl else s2
end
3.8 "Repeat" statement

REPEAT
sequence of statements separated by semicolons
NTIL Boolean expression

causes the sequence to be executed repeatedly (at least once) until
the expression evaluates to TRUE when it is checked at the end of a
loop.

3.9 "While" statement
WHILE Boolean expression DO statement 1

Statement 1 is repeated zero or more times until the expression
turns out to be FALSE.

56 <>

X FORD PASCAL

3.10 "For" statement

FOR variable := el TO e2 DO statement 1
The variable can be any scalar type except real. el and e2 are
expressions of the same type as the variable. Statement 1 is
executed exactly ord (e2) - ord (el) + 1 times (zero times if
e2<el) . On successive loops the value of the variable is el,
succ(el), succ (succ(el)),..., e2
An alternative form is:

FOR variable := e2 DOWNTO el DO statement 1

Where statement 1 is executed with successively decreasing values of
the variable.

Statement 1 should not try to alter the variable, as in:

for i :=1 to10do i := i + 1 (* WRONG *).
Structure members (section 5) can't be used as control variables in
FOR loops.
Also, control variables must be local to the current block (section
6.4).

3.11 "Case" statement

CASE expression OF
constant list : statement;
constant list : statement;

constant list : statement;
END

A redundant semicolon may be included before the END.

Bach constant list consists of one or more constants (which must be
the same data type as the case expression), separated by commas. The
case expression must be a scalar type (and can't be real). Each
label in the case statement should be unique, and indicates that the
statement it prefixes is the one to be executed if the case
expression has that value. If no case labels match the expression
value when the case statement is executed, a CASE ERROR occurs,

WARNING - Case statements with a wide spread of wvalues should be
avoided, for example:

o <>

OXFORD PASCAL

Case n of

l: statement 1;

44 ,255: statement 2
end

This will generate a large jump table in memory with null entries
for all the intermediate wvalues (2,3 etc.). Generally, case
statements are an efficient way of choosing one of many similar
statements to execute.

3.12 "Goto" statement

Pascal statements may be prefixed by a label thus:

label : statement
The label is an unsigned integer which should differ from all other
labels in the first 8 digits in OXFORD PASCAL (4 digits in standard
Pascal). Control can then be transferred to this statement from
another part of the program by means of the "goto" statement.

GOTO label
All labels must be declared before use (see below).
The effect of jumping into a structured statement (FOR, WHILE,
REPEAT, 1IF, (ASE, WITH) or into a function or procedure is
unde fined.
The use of GOTO's is not recommended if it can be avoided, since
programs gquickly become unreadable and error detection becomes a
sticky matter.

Jumping to an undefined (as against undeclared) label is signalled
as a runtime error in OXFORD PASCAL.

GOTO's can be used to exit from nested functions and procedures.

Label declaration

This takes the fomm
LABEL list of labels;

The labels are separated by commas.

4. Input and Output of text

A file is a Pascal structured variable which (unlike arn array) has

¥ <

(X FORD PASCAL

no fixed size. Its elements are normmally accessed sequentially and
either reside on a disc or are associated with some physical I/0
device such as the console or printer.

In this part we look mainly at textfiles, which are essentially
files of characters (Pascal data type CHAR), but which give special
treatment to the newline character. In particular the standard
textfiles INPUT and OUTPUT, which are usually the console keyboard
and display, are discussed. Disc files are covered later in parts 8
and 9 of this manual.

4.1 Outputting to textfiles

A textfile is a variable declared as type TEXT. Associated with any.
Pascal file f is a buffer variable £ which is used in transferring
data to and from the file. The standard procedure call:
write (£, ch)
is equivalent to

£f~:= ch; put (f)
writeln (f)

sends a newline character (ASCII carriage return followed by a line
feed) to the file f.

page (f)

sends a form-feed (or clears the screen in the case of the console).

4.2 Inputting from textfiles

get (f) reads the next item from the file £ into f~.
read (f, ch)

for a character variable ch is equivalent to:

ch := £°; get (ch)
If the result of a GET is a newline character (a carriage return -
linefeeds are ignored in textfiles), then £~ appears to contain a
space and the standard function EOLN(f) is set to TRUE. Otherwise
BOLN (f) is FALSE.
If the end of the file has been reached then get(f) will cause the
standard function eof(f) to become true, and f~ will be undefined.
Doing a get(f) while eof(f) is TRUE will cause an error.

readln(f)

59 <>

X FORD PASCAL

skips to the start of the next line. It means:
begin while not eoln(f) do get (f); get (f) end

4.3 Reading other data types from textfiles

Syntax:
read (£, variable list)

each variable in the list can be of type CHAR, INTEGER or REAL.
char : reads one character into the variable, as above.

integer : reads any valid (signed or unsigned) integer constant
into the variable, skipping leading blanks and newlines.

real : reads any valid integer or real constant into the
variable, skipping leading blanks and newlines.

f° is set in each case to the next character after the data read.

4.4 Writing other data types to textfiles

Syntax:
write (f, expression list).

each expression can be of a type CHAR, REAL, BOOLEAN, INTEGER or a
string, and may be qualified by a field width

expression : w

where w is a non-negative integer expression giving the total number
of characters to write to the file.

Character or string: write sufficient spaces to give a total of w
characters, then write the character or string.
If w is too small then the string is truncated
on the right. Default w= the size of the
string.

Boolean: as with string, but one of 'TRUE ' or 'FALSE'
is written. Default w=6.

Integer: Write sufficient spaces first to give a total
of w characters. Then write the number without
leading zeros, preceded by a minus sign if it
is negative. If w is too small print out the
entire number with no spaces. Default w=7.

60 <>

Real:

4.5

Abbreviations

4.6

(X FORD PASCAL

There are two formats:

i) Floating point - write a
sign character (space or '-') followed by a
digit, followed by a decimal point, followed by
enough digits to give a total of w characters,
followed by a 4-character exponent. If w is
too small, at least one digit is still printed
after the decimal point. Default w=1l2.

(ii) Fixed point - the number
of decimal places must be specified:

expression : w : d

Enough spaces are first
printed to give a total of w characters,
followed by a minus sign if negative, followed

a decimal point and d fractional digits,
with rounding if necessary. If w is too small,
no spaces are printed but the entire number is
still output.

writeln (£,...) is short for write (f,...);writeln (f)

readln (f,...) is short for read (f,...);readln (f)

write (..+) 18 short for write [ountput,..:)
read {+e-) 38 short for read (Inphti;.:.)
writeln is short for writeln (output)

readln is short for readln (input)

eoln is short for eoln (input)

eof is short for eof (input)

page is short for page (output)

Manipulating files

There is no problem in passing files as variable parameters. In
OXFORD PASCAL (but not in standard Pascal) assignment and passing as
value parameters is also allowed. For example:

61 <

X FORD PASCAL

var sourcefile : text

begin
sourcefile := input;

rea-.d (sourcefile,x); (* reads from console *)

5. STRUCTURED DATA TYPES

5.1 Arrays
The syntax of array types is:

ARRAY (indextype) OF element type.
Where "indextype" can be any scalar or subrange type except real.
If indextype has values ranging from m to n, say, then this defines
an array of ord (n)-ord(m)+l values of type "elementtype", which are
referenced using the subscripts [m], [succ(m)],...,[n].
Alternatively arrays can be accessed as a whole:
Examples:

var x,z : array [l1..64] of integer;

y ¢ array [0..3) of [-4..2] of real;

begin
x [1] == 0;
x [5) == x [1] H2;
y. 131 [Tee 303455
Z = X; (* Transfer whole array *)

"element type" may be any Pascal data type. N-dimensional arrays
may be abbreviated as follows:

array [tl,t2,...,tn] of sometype
which is equivalent to:

array [tl] of array [t2] of ... array [tn] of sometype
exampl e:

var x: array [1..7,4..9, boolean] of char;

references to n-dimensional arrays may also be abbreviated,

62 <>

(X FORD PASCAL

x[i,7,false] := '§';
5.2 Sets
The syntax is:-

SET OF elementtype

where "elementtype"™ should be a scalar or subrange type, but not
REAL., Sets are constructed from a collection of wvalues in square
brackets, for example:

x : set of 0..127;
y : set of (RED,GREEN,BLLE);

x:= [1,sqr(2), 6..74]1;
:= [BLUE, GREEN];

where 6..74 gives all the values between 6 and 74 inclusive. Set
elements must have ordinal values between 0 and 127 inclusive. TE
their base types are compatible, then two sets are said to be
compatible, and operations on compatible sets are:

Intersection (highest precedence)
and - Union and difference
<> <= >= Equality, inequality and inclusion tests.

LG

The IN operator tests membership of a set. The right hand side
should be a scalar compatible with the set's base type. IN has the
same precedence as the relational operators <>,= etc.

63 <

X FORD PASCAL

Examples:
Assuming

var x,y : set of (APPLES, PEARS, ORANGES, BANANAS, FIGS);
begin
:=[APPLES, PEARS, BANANAS];
y:=[BANANAS, FIGS];
Then
x+y is [APPLES, PEARS, BANANAS, FIGS]
x-y is [APPLES, PEARS]
x*y is [BANANAS]
x=y,x<=y and x>=y are all false
x<>y is true
y < = [APPLES, FIGS, BANANAS] is true
y<=y is true
y>=y is true
y=[BANANAS, FIGS] is true
BANANAS IN y is true
ORANGES IN x+y is false

5.3 Records
The basic syntax is:

RECORD
identifier list : data type;
identifier list : data type;
identifier list : data type
END

An optional semicolon may be placed before the END. The fields
be accessed by the field name preceeded by a dot, for example:

var x,y:record
a,b:integer;

c:real
end;
begin
X.b := =33;
X.c := 9E-20;
X.a := x.b+2;

Entire records may also be assigned:

Several different record definitions may be combined using
following syntax:

64

may

the

<>

(X FORD PASCAL

RECORD

any fields common to all variants

CASE identifier:datatype OF
constant list : (field list);
constant list : (field list);

constant list : (field list)
END

Again there can be a redundant semicolon before the END. The
variant "field lists" may themselves contain nested variants, for
exampl e:

type date = record
year : integer;
month : (JAN,FEB,MAR, APR,MAY,JIN,JLY,AUG, SEP,OCT,NOV,DEC) ;
day : 1..31;
end;
person = record
name: packed array [1..30] of char;
birthday : date;
case status: (EMPLOYED, WEMPLOYED,RETIRED, STUDENT) of
UNEMPLOYED: (registered : date);
EMPLOYED : (case selfemployed : boolean of
true : (numberofemployees: integer);
false : (employer: packed array [1..30]
of char;
dateemployed : date))

end;
var his:person;
begin
his.name := 'Harry Johnson s

his,birthday.year := 1938;
his.birthday.month := DEC;
his.birthday.day := 12;
his.status := EMPLOYED;
his.employer :=

etc.

65 <

QX FORD PASCAL

WITH statements have the effect of declaring the fields of a record
as local variables for that statement. For example:-
with his, birthday do

begin
month := DEC;
year := 1938;
day = 12;
end;

The record cannot however be referenced as a whole from inside the
with statement.

WITH rl, r2, ..., rn DO statement
is equivalent to:
WITH rl DO WITH r2 DO ... WITH rn DO statement

5.4 Packed structures.

Records, arrays, sets and files may be preceeded by the word
"packed"”. This is a command to the compiler to optimise storage
space for that structure, possibly at the expense of speed in
accessing individual components of the structure. In OXFORD PASCAL,
"packed" has little effect on speed, but may cut storage by half in
arrays of enumerated values, characters and subranges (0.255 and
less). The disadvantage is that packed array elements can't be used
as VAR parameters to procedures or functions (but whole packed
arrays can).

Packed arrays [l..n] of type CHAR are special in Pascal because they
are considered to be string variables of length n.

Examples:

var x,y :packed array [(l..4] of char;
z : packed array [1..10])] of char;

begin
x 2= ‘how ";3
y := 'when';
z := 'Hi there !';

y=x is false, y>x, y>=x and y<>x are true.
y>'what' is true, x<'why ' is true.

But note:
x ard z are incompatible (different lengths)

x and 'hello' are incompatible.
z and 'who ' are incompatible.

66 <>

X FORD PASCAL

5.5 Pack and Unpack (not available in resident mode)

These standard procedures are provided in accordance with standard
Pascal:

If U and P are array variables, for example

type t =(some data type);
var U : array [m..n] of t;
P:packed array [a..b] of t;
where (m-n)>= (b-a)
then
pack (U,i,P) is equivalent to
for j:=a to bdo P [j] :=U [j-a+i]
and unpack (P,U,i) is equivalent to
for j := a to b do U [j-a+i] := P[]]

6. Functions and Procedures

6.1 Function and procedure definitions

The syntax for each definition is the same as the syntax for a
program, except that a function or procedure header is used instead
of a program header, and also a semicolon appears at the end instead
of a full stop:

procedure or function header

label declarations

const definitions

type definitions

variable declarations

procedure and function definitions

BEGIN

executable code for this procedure or function
END;

Any number of procedures or functions may be defined in a program.
The definitions should occur between the variable declarations and
the main "BEGIN" of the program.
A procedure header has the fom:

PROCEDURE procedur ename;
or

PROCEDURE procedurename (formal parameter list);
A function header has the form:

FUNCTION functionname : datatype;
or

67 <>

GKFORD PASCAL

FUNCTION functionname (formal parameter list) : data type;

6.2 Procedure and function calls.

Procedure calls are statements having the fom:
procedur ename

or
procedurename (parameters)

The effect is to execute any code between the BEGIN and the END of
the procedure definition, and then return to continue the program
nomally, from the statement after the call.

Function calls are expressions which have the data type specified in
the function header. To evaluate the function, any code between the
BEGIN and the END of the definition is executed, and the value
returned is the last value that was assigned to the function name.
The value returned by a function must be a scalar or a pointer.

Examples:

procedure Xx;
begin
writeln ('=xxxxx')
end;
begin x;
writeln ('yyyyy'):
X;
end.

Is equivalent to

begin
writeln ('=xxxxx')
writeln ('yyyyy')
writeln ('xxxxx');
end.

. we

68 <>

GXFORD PASCAL

The following example will set i to the value 4:

var i : integer;
function xyz : integer;
begin
Xyz
Xyz
end;
begin
i = xyz;
end.

2
4

~ s

6.3 Parameters

The usefulness of procedure and function calls can be extended by
passing parameters. If these are used they must correspond in
number, position and type with the formal (dummy) parameters in the
defini tion.

The formal parameter list contains one or more parts separated by
semicolons. Each part has one of the formms:

identifier list : datatype

VAR identifier list : datatype
FUNCTION identifier list : datatype
PROCEDURE identifier list

These correspond to four different classes of parameters, FUNCTION
and PROCEDURE parameters which are substituted with expression
values, variables, function and procedure names respectively when
the function or procedure is called.

69 <>

X FORD PASCAL

Examples:

const SIZE = 20;

type vec = array [1..SIZE] of integer;
var v:vec ; i:integer;

function tan (x:real):real;

begin
tan := sin (x)/cos(x)
end;
procedure zero (var a:vec);
begin
for i := 1 to SIZE do a [i] := 0;
end;
function square (x:integer):integer;
begin
square := sgr(x)
end;

function sigma (function f:integer; n,m :integer):integer;
var sum, i:integer;
begin
sum:=0;
for i:=n tom do sum:=sum+f(i);
sigma:=sum;
end;

Given the above definitions

tan (0.5) would give the tangent of 0.5 radians
(sin (0.5)/cos(0.5))
zero (v) would set the array v to be all zeros.

Note that passing large arrays (and records) as VAR parameters is a
good idea, because the computer does not then have to copy the
array.

sigma (square,l,20)
evaluates 1+4+4+9+16+...+400.

OXFORD PASCAL (and many other Pascal systems) will not let you pass
standard function and procedure names as parameters, hence the need
for the function "sguare".

WARNING - PFunctions and procedures passed as parameters can
themselves only have value parameters, and these are not checked .

70 <>

(X FORD PASCAL

procedure X(a:real);
begin
end;
procedure y(procedure b);
begin

b(4)
end;

Legin
y (x)

will lead to disaster because x expects a real and gets an integef
parameter (4).

6.4 Local declarations

Any variables, constants, labels, types, procedures and functions
declared within a procedure or function are local to that procedure
or function and cannot be referred to from outside it.

"Global" identifiers defined outside a function or procedure may

also be referenced inside it, unless they have been redefined by
local definitions.

7 <>

X FORD PASCAL

Examples:

program example;

var i:integer; (* may be referenced by main prog, Pl and P2 *)
j:real; (* may be referenced by main prog and P3 *)
k:boolean; (* may be referenced anywhere *)

procedure Pl;
var j:integer; (* may be refereneced by Pl and P2 only *)
procedure P2;
var m:char; (* may be referenced by P2 only *)
begin
end;
begin
end; (* OfPl *)
procedure P3;

const i=49; (* may be referenced by P3 only *)

Pl and P3 may be called from anywhere.
P2 may be called from Pl or P2 only.

6.5 Recursion and forward references.

Functions and procedures can call themselves recursively:

function factorial (x : integer):integer;
begin
if x=0 then factorial := 1
else factorial := factorial (x-1)*x
end;
factorial (4) gives 4*3*2*] = 24

Sometimes it is helpful for a procedure to be able to call another
procedure before the procedure being called is defined.

12 <>

X FORD PASCAL

Exampl e:

procedure x(parameters for x); forward;
procedure y(parameters for y);
begin
(* calls x *)
end;
procedure X;
begin
(* calls y *)

end;

x and y call one another (they are "mutually recursive")

7. Dynamic storage and Pointers

7.1 Pointers

Variables of a pointer type take as values the memory address of
other variables. This can be used in Pascal to create variables as
required while the program is running, since the compiler does not
need to know the memory address in advance if it can be stored in a
pointer. The syntax os a pointer type is:

-

type pointed to

where "type pointed to" is an identifier which is the name of some
data type (which could be declared later, allowing recursive
definitions such as linked lists and trees).

Examples:

type treepointer = “tree;
tree = record
lef tbranch, rightbranch : treepointer;
data : sometype;

end;
var oak : tree;
P : “integer;

The only way of giving a pointer a value in standard Pascal is to
assign it the value "nil" (which is guaranteed to point to no
variable) or to use the procedure "NEW".

In OXFORD PASCAL, "nil" is the address 0000.

Pointers can, once assigned a value, be tested for equality (<> and

=).

73 <

QX FORD PASCAL

7.2 "New" and "dispose"

NEW allocates a new variable from the available storage (if any) and
stores a pointer to it in the specified variable.

The variable created may then be referenced by the pointer variable
followed by a”.

DISPOSE destroys the variable pointed to by the specified pointer
and makes the storage available for other use. Of course you must
be sure that the variable being DISPOSED is never referenced again.

Examples:

var p: "real;
begin
new (p);
p~ :=103.7;
write (p“*p~*p~);
dispose (p);
end.

Would print the cube of 103.7 and then destroy the space used to
store it. P~ means the variable whose address is in p.

8. Disk Files

8.1 Declarations

Disk files are declared as Pascal variables of type "file of X"
where X is the base type of the file, and can be any structured or
unstructured data type. For example:

type patient = record
name : packed array [1..20] of char;
wordnumber : integer

end;

var f: file of integer;
g,h: file of patient;

very file f declared in Pascal has an asociated buffer variable £~
whose type is the base type of the file. Disk files can also be
textfiles, for example:

var fl1, f2 :text; (see section 4.1)

8.2 Sequential writing

Before they can be read or written, disk files must be opened using

4 L'

X FORD PASCAL

one of the standard procedures RESET and REWRITE.
rewrite (f)

creates an empty file which is then open for sequential writing.
The end-of-file function eof(f) will return TRUE in this mode. The
call put(f) writes the data in the file buffer (the variable £7) to
the file.
The sequence:

begin £° := expr; put (f) end
may be abbreviated to:

write (f,expr)
IMPORTANT NOTE - in OXFORD PASCAL, assignments should not be made to
the buffer variable £~ before a reset(f) or rewrite (f) has been

done.

8.3 Sequential reading

The procedure call:
reset (f)

opens the file f for sequential reading.f must previously haave been
written by a REWRITE command, otherwise the error message FILE DOES
NOT EXIST will be printed. The first record in the file will be
placed in the variable f~. (Or if f is empty, f~ will be undefined
and eof(f) will be true).

Successive records can be read into the buffer variable f~ by the
procedure call:

get (£)
read (f,x) is equivalent to x:=f";get (f)

The function eof(f) returns TRUE when there are no more records in
the file. Attempts to read past an end-of-file will cause an error.

As an example the following program writes a file containing the
numbers 1 to 10, and then reads them back printing them on the
console:

75 <>

(X FORD PASCAL

var i: integer;
testfile : file of integer;
begin
rewrite (testfile);
for i := 1 to 10 do write (testfile , i);
reset (testfile);
while not eof (testfile) do
begin
read (testfile, i);
writeln (i)
end
end.

8.4 External files

The files described above are "internal®"files, in other words
temporary files which are nommally deleted when the program (or
procedure or function) in which they are defined finishes.
Permanent diskette files may be created and/or accessed by giving a
filename parameter to RESET or REWRITE. (The parameter may be
either a string constant or a string variable). This is an
extension to standard Pascal allowing specification of filenames,
which can be useful in interactive programs.

If the filename is a string variable, it should be terminated by at
least one space.

Examples:

var fname : packed array [l1..15] of char;
f, g : file of sometype;

begin
reset (f,'datafile’)
fname := 'B:TEMP, HEX ¥

rewrite (g,fname);

Disk textfile example

The following example program prompts the user for a disk file name,
and then outputs an upper-and-lower-case textfile to the printer.

76 <>

CGXFORD PASCAL

program printfile;
var fname : packed array [1..80] of char;
ch : char;
£ 2 text;
begin
writeln;
writeln ('Filename ? ');
read (fname);
reset (f, fname);
while not eof (f) do
begin
while not eoln (f) do
begin
read (£, ch);
write (printer, ch);
end;
readln (f);
writeln (printer);
end
end.

9. Extensions to standard Pascal

The features described in this section are specific to OXFORD PASCAL
and might not be implemented on other systems.

9(a) Hexadecimal constants These are introduced by the symbol $
(for integer constants) or a backslash (for character constants)

Their main application is probably in machine language and I/0
interfacing

examples:

const UART=$eB4f;

linefeed= <backslash> a;
var chardata:char;
begin

chardata:=linefeed; (* linefeed is a
constant of type CHAR *)
poke (UART, $3f);

77 <>

(X FORD PASCAL

(writes the data 3f hex to a UART chip mapped at hex memory address
EB4F)
(<backslash> in the example above stands for the backslash symbol)

9(b) Memory, VDU and port access

The standard functions/procedures PEEK, POKE, INP, OUT, ORIGIN,
GETKEY and VDU are provided for this purpose.

peek (x:integer):0..255

is a function which gives the contents of the physical memory
location x, while the procedure

poke (x:integer; y:0..25%5)
is used to change the contents of location x to the byte y. Poke

should, of course, be used with great care to avoid corrupting your
program.

inp (" 05.255) ¢ 0..255
out (x,y : 0..255)

are like PEEK and POKE but input and output from the 8080/Z80 CPU
port x.

origin (x: “sometype, y:integer)
sets the pointer x to point at the physical memory location y. x
can be any pointer type. This should be used with care (see section
10)

The procedure VDU (x,y :integer; c :char) stores the character ¢ in
the VDU memory row x, column y.

WARNING----"VDU" takes no account of scrolling. To ensure that row
0 column 0 is in the top left corner of the screen, the screen
should be cleared (using the standard procedure PAGE) before VDU is
used.
Finally, the function

getkey:char

returns a character read directly from the console keyboard port.
Chr(0) is returned if no character is ready.

EXAMPLES

var x:0..255;

78 <>

X FORD PASCAL

begin poke($014c, $33); stores the byte 33h at address 41Ch
x:= peek(47); sets x to the contents of decimal
memory address 47

write (inp ($C9)) reads a value from the CPU port
C9 and prints it
oat {512, ‘ord (*$Y)) writes a dollar to the
CPU port 12h
page; clears the VDU screen
vDu(o,3,'2'); writes a question mark to the VDU

row 0, column 3

while getkey=chr(0)do; waits for someone to press a key

9(c) Hexadecimal input and output

The procedures WRHEX and WRHEX2, and the function RDHEX are
provided.

wrhex (f:text; x:integer)
writes x as four hex. digits on the textfile f.

wrhex2 (f:text; x:0..255)
writes the byte x as two hex. digits.

Examples :

wrhex (printer, -1); wrhex2 (output, 3)

prints FFFF on the printer and 03 on the console.
The function
rdhex (f:text):integer

reads a 16 bit value from the file f, skipping any leading blanks
and discarding all but the last four digits read.

9 (d) Bit manipulation

ANDB,ORB,XORB,NOTB,SHL, and SHR are functions operating on integers
but treated as 16 bit logical data. The first four do bitwise AND,
inclusive OR, exclusive OR and 1l's complement.

SHR(x,y) shifts x left by y bits(zeros are shifted in)

SHL(x,y) shifts x right by y bits

79 <

M FORD PASCAL

SHL(x,-y) is eguivalent to SHR(x,y)
examples:

andb ($£ff0,$00££)=$00£0

orb ($££00,$000f)

SEfof

xorb($££00,$0££0) $ £0 £0
notb($£0£0) = $O0f0f

shl (4,4) $40

shl(4,-1) 2
shr (4,-12) = $4000
shl(4,0) = shr(4,0)=4

shr ($4444,4) = $444

9(e) Catching I/0 errors

Occasionally it is necessary for a program to protect itself against
unexpected termination due to invalid input.
The procedure call

iotrap(false)

turns off Pascal error messages for real and integer read operations
and disk I/0

iotrap(true)

turns checking back on again. After each integer or floating point
or hex read operation the function IOERROR may be used giving an
integer error number:

ioerror= 0-No error

2-Integer read error

1l0-Floating point read error

etc. (see section II.8 for a complete list of I/0 runtime
errors).

9(f) Keyboard interrupts

The calls breaks(true)
breaks(false)

80 <>

CGXFORD PASCAL

enable and disable the ESCAPE (and CTRL-S) keys respectively.
The default is breaks (true).

9(g) Random Number Generator

The function random :0..255 gives a random no. between 0 and 255. A
pseudo-random generating sequence is used but this is initialised by
timing all keyboard inputs and is also "kicked" frequently by the
Pascal interpreter.

The construction

random+(random mod 128)*256 generates a random no.
between 0 and MAXINT, while

random mod n+l generates an (almost)
random no. in the range
1..n if n is not too

large.
9(h) Underscore
The character ' ' is allowed as a letter in identifiers giving

improved readability.

9(i) Input of String Variables

String variables (ie packed arrays [l..n] of char) may be read from
textfiles in a similar manner to characters, integers and reals.
Any leading spaces or newlines are first skipped, then an entire
line of characters is read from the file into the string variable.
If the string is too long, it is truncated on the right, if it is
too short it is padded out with spaces.

A major application is for inputting file names from the console.

9(j) Program chaining (disk mode only)

The OXFORD PASCAL command :

chain (filename)
stops execution of the current program and inwkes the program
named. The value of GLOBAL variables will be preserved only if
declarations are identical in the old and new programs. All files
are closed.
The filename can be either a string or a string variable. (If a
string variable, at least one space must be used as terminator).
When used under the RUN command, a ".obj" extension is impiled.
When used in a LOCATED. program, the chain command simply executes

81 =8

KX FORD PASCAL

the CP/M command named (.COM extension assumed), which need not be a
Pascal program.

Example:
file "progl"™ (object code in "progl.obj"):

begin
writeln ('First program');
chain ('Prog2')

end.

file "prog2" (object code in "prog2.obj"):

begin
writeln ('Second program') ;
chain ('Progl')

end.

The command
ex progl
would cause the following to be printed:
First program
Second program
First program
Second program

until the ESCAPE key is pressed.

Program chaining is a useful technique for splitting up large
programs, or for menu-driven applications.

9(k) CP/M Directory maintainence (disk mode only)

Deleting and renaming files.

delete (fname) deletes the file "fname" from the
CP/M directory.

repname (fnamel,fname2) renames the file "fnamel" to be
"fname2"

examples:
var oldfile : packed array [l..6] of char;

begin
delete ('b:test');

82 L

X FORD PASCAL

delete ('mary.com')
oldfile := 'a:joe ';
rename (oldfile, 'smith');

The currently logged disk.

procedure login (drive : char)
logs in a new disk, for example:
login ('B");

To find out the drive letter of the currently logged disk, use the
function:

logged : char

9(1) Random Access Files (disk mode only)

A file may be opened for random reading or writing by using the OPEN
command (which has the same syntax as RESET and REWRITE). The file
is automatically positioned at record zero (the first record) and
this record if it exists, is placed in the file buffer.

seek (f, n)

positions the file f at the nth record, leaving the nth record in
the file buffer. A subsequent PUT will write the nth record and
advance to the n+lth, while a GET will advance to the n+lth record
and read it into the file buffer.

Eof (f£) has no significance when in random access mode.
Sequentially written files may always be read randomly, but randomly
written files are likely to have unwritten (garbage) records which
may contain an end of file, and should not be read sequentially.

Random Access Example

(* A simple mail list program using random access files.

» %

The file MAIL.LST must first be formatted (see separate
* program below)
*)

const MAXREC = 100; (* Arbitrary max. number of records *)
type data = record

name : packed array [1..30] of char;
address : packed array [1..60] of char;

83 <>

GXFORD PASCAL

telephone : packed array [1l..15] of char;
end;

fyle : file of data;

rec : data;

command, cmd : packed array [1..10] of char;
recnum, i : integer;

procedure getrecordnumber;

begin
repeat
writeln;
write ('Record number ? ');
read (recnum)
until (recnum > 0) and (recnum <= MAXREC)
end;

procedure getname;

begin
write ('Name ? ');
read (rec.name)
end;

procedure getaddress;

begin
write ('Address ? ');
read (rec.address)
end;

procedure gettelephone;

begin

begin
write ('Telephone number ? ');
read (rec.telephone)

end;
open (fyle, '"mail.lst"');
repeat
page;
writeln ('Type: i to input new record');
writeln (' c to change an existing record');
writeln (' d to display a record');
writeln (' 1 to list contents of the file');,
writeln (' g to quit');
writeln;

write (*2 Y);

read (command) ; 7

if command f1] in ["i','e",'d',"1'] then
case command [l] of

'i': begin (* insert new record *)

84

<>

X FORD PASCAL

getrecordnumber;
getname;

getaddress;
gettelephone;

seek (fyle, recnum);
write (fyle, rec);

end;
'd': begin (* display a record *)
getrecordnumber;
seek (fyle, recnum);
writeln;
writeln ('Name: ', fyle”.name);
writeln ('Address: ',fyle“.address);
writeln ('Tel: ',fyle”.telephone);
end;
'¢": begin (* modify a record ¥*)
getrecordnumber;
seek (fyle, recnum);
rec := fyle”;
writeln;
write ('Which field do');
write (' you wish to change ? ');

read (cmd) ;
if emd [1] = 'a' then getaddress
else if emd [1] = 'n' then getname
else if emd [1] = 't' then gettelephone;
write (fyle, rec);

end;

'1': begin (* list the file ¥*)

seek (fyle,l);

for i:=1 to MAXREC do begin
read (fyle, rec);
writeln;
writeln (i);
writeln (rec.name);
writeln (rec.address);
writeln (rec. telephone);

end;
end;
end; (* of case statement *)
until command [1] = 'q';

end.
(* Formatting program to create an empty mail list file *)

const MAXREC =100;
type data = record

85

OXFORD PASCAL

name : packed array [l1..30] of char;

address : packed array [1..60] of char;

telephone : packed array [1..15] of char;
end;

var fyle : file of data;
rec : data;
i : integer;

begin
rewrite (fyle, 'mail.lst');
name := ' L)
address :=
] L
telephone := ' i
for i := 0 to MAXREC do write (fyle, rec)
end.

10. OXFORD PASCAL interface gquide

The purpose of this section 1is to provide all the necessary
information to write 8080 (or Z80) machine language subroutines for
OXFORD PASCAL programs.

10.1 Assembly language format

Assembly language routines are declared as Pascal functions or
procedures but the body is replaced by the word "extern" followed by
an integer constant (the routine address). Any parameters are passed
on the stack and should be removed by the assembly language routine.
The routine should also push a return value on the stack if it is
declared as a function.The best way to describe this is by example,
so here is a simple function to add two integers:

program test;

function addxy (x,y: integer):integer;
extern $7400;

begin
write (addxy(3,4));

end.

This should result in the output:
7

Provided that the assembly language routine is correctly located at
memory address 7400h:

86 &

(X FORD PASCAL

org 7400h
addxy: pop b ; pop return address
pop h ; pop the parameter y
pop d ; pop the parameter x
dad d ; add x to y
push h ; put the result on stack
push b ; put the return address back
ret ; return to Pascal

Where to locate assembly langauge routines

In executable (.C0OM) files produced by the "locate"™ command,
locations 2D00 and 2D0lh point to the last location used by the
Pascal object code. Locate the routines somewhere above this address
and modify the pointer accordingly. (The SID and SAVE commands can
be used for this purpose). Remember that the first byte of a .COM
file actually corresponds to location 0100h.

10.2 Storage formats

All scalar and subrange types (except REAL), and pointers are passed
as 16-bit words in the usual low-high format.

Reals are passed as 4 bytes:

loc n+3: 8 bit 2's complement exponent
loc n+2: Sign, MS 7 bits mantissa.

loc n+l: Middle 8 bits of manissa.
locn : LS 8 bits of mantissa.

If the exponent is zero then the mantissa MS bit represents 0.5.
Arrays are stored row-by-row (the opposite to FORTRAN), the lowest
element has the lowest address.

Arrays are byte-packed if their elements are scalars in the range
0..255 (eg. char), and "packed" was specified. In this case the
size is always rounded up to an even number of bytes.

Records are stored with their fields in reverse order (first
declared has highest address). Sets are passed as a 128-bit map, a
"one" indicates membership. 0dd and even bytes are reversed:

loc. n+l5: bt 15 ..o bit B
loc n+l4d bit 7 ... bit 0
loc n+l bit 127 ... bit 120
loc n bt 119 5 bit 1] 2

IMPORTANT - pointers always point to the location above the highest

87 g

OGXFORD PASCAL

byte used by the actual data. This also applies to VAR
parameters,which are passed as addresses.

Example:

const VDUSIZE = 1024; (* 16 rows of 64 chars *)
type screen = packed array [l..VDUSIZE] of char;
var vduptr :"screen;
begin

origin (vduptr, $9000 + VDUSIZE)

This declares an array based on the Triton vdu address 9000h.
vduptr”® [1] is the first vdu location.

CP/M File Format

Data is stored on disk in an identical manner to the way packed
arrays are stored in memory.

The end of file is marked by a control-Z (1lAh) followed by 0 to 127
zero bytes to pad out the last record. Random files have no end of
file. Text files need only hawve a CTRL-Z to mark the end of file
(or not even this if the end of file coincides with the end of a
record). This ensures compatibility with CP/M editor files.

V. A tutorial introduction to the OXFORD PASCAL text editor

Introduction

Our discussion of the Text editor will assume that it is being used
in conjunction with the OXFORD RESIDENT PASCAL compiler. Once you
have entered the editor program the actual configuration in use is
irrelevant.

This manual is intended to simplify learning the use of the editor
and it is recommended that the examples and exercises are followed.
Do the exercises! They cover material which is not completely
covered in the text. An appendix covers all of the commands
available.

Clearing the buffer the KILL command K

To clear the text buffer, either because it contains rubbish, or
because you do not want the contents, use the KILL command. This is

entered simply as the letter K.
Do not forget the RETURN afterwards. The editor will ask :

Sure ?

88 <>

(X FORD PASCAL

You need to type 'Y' RETURN to confirmm that you want to kill the
buffer. We now have an empty buffer ready to put our text into.
After entering this command, the editor will reply with its prompt
(a >) to indicate that it is waiting gor your next command.

Creating text the APPEND command A

Initially we will just deal with the case of entering text into the
empty buffer and adding on lines to the end of those already
entered. The append command is written simply as the letter

It means "append lines of text to those already in the buffer as I
type them in®, Appending is rather like adding new sentences to an
essay. To enter text, we type a RETURN and then the lines of text
that we want, like this:

Now is the time for
all good men to come
to the aid of their party.

Notice that the last line is a single period. This is not a line of
text and it is not put in the text buffer. The "." signifies to the
editor that we want to stop adding new text to the buffer. If later
on you find that the editor is ignoring your commands, type a line
containing a single period. Even experienced users forget to type
that line sometimes. If this happens, you will probably find a few
lines of rubbish in the text which will need deleting later. After
the above append command has been completed the text buffer contains
the three lines of text but not the "a" or "." which were commands.
To add more text, simply give another "a" command and continue
typing.

Errors = '?2!

If at any time you make an error in the commands that you give, the
editor will respond with a ? . This is about as cryptic an error
message as you can get, but you will soon realise why the editor
cannot make sense of your command. The two most common errors are
speci fying a line number which does exist or giving a command which
does not exist.

Printing the contents of the text buffer

Having entered some text into the text buffer we will want to print
it so that we can check it for errors. To do this we use the print

89 <>

(X FORD PASCAL

command:

P

This is done as follows. We specify the lines we want to print
before the p as a start and end line number separated by a comma. At
present we have 3 lines in the text buffer so 1,3p will print all of
the lines in the text buffer. If we only want to print one line, say
the second, we can omit the second number and in this case simply
type 2p rather than 2,2p. In our case this would produce

all good men to come

If we want to print all of the lines in the buffer, then the editor
allows us to use another abbreviation which is especially useful
when there are a lot of lines in the text buffer and we do not know
exactly how many. We can use the symbol $ as the second line number
so 1,$p means print all of the lines in the buffer from the first to
the last,

In general, when a line number is required in a command we can use $
to represent the last line number. To stop a listing on the screen
type an escape. This will cause ? to be printed followed by a
prompt.

If we wish to print single lines of the buffer it is possible to
abbreviate the command even more than shown abowve. It is simply
necessary to type the line number and omit the p.

For instance, 2 will print line 2 or $§ will print the last line,
Finally we can modify $ by typing something like $-1 meaning the
last but one line. Hence $-1,$p will print the last two lines in the
text buffer. To find how many lines are in the buffer type '$='.

Leaving the editor the quit command 'q'

To leave the editor and do something with the text we have just put
in the buffer, type g. After this you are returned to Pascal. The
text buffer is left intact and can be used as data for an assembler,
a compiler or a text processor.

Exercise 1

Enter the editor from Pascal and clear the text buffer. Then enter
some text using append. Use a series of commands like:

k
a
seis s BEELE, . .

90 <>

OXFORD PASCAL

Now experiment with the print command to list all or parts of the
buffer until you are confident how print works. An understanding of
the use of line numbers is important because the same format is used
for other commands later on. Also verify that if you gquit and
re-enter Pascal then the text remains unchanged until a kill command
is issued. If you try to print and empty buffer or line 0, or a line
past the end of the buffer or part of the buffer backwards (i.e.
3,1p) ...then an error will occur.

Writing text out to a file the write command 'w'

Having put text into the buffer and modified it, you will probably
want to save it on tape for later use. The write command allows you
to save the whole of the text buffer on disk as a named CP/M file.
Type a 'w' followed by the file name, for example:

W program
The file extension defaults to .PAS, so that the buffer will be

written to the file PROGRAM.PAS. If the file exists already it is
first deleted.

Reading text back from a file the read command 'r'

When you wish to reload the text you saved on disk, use the r
command. Again you need to give a file name. This should be exactly
the same as the name used to save the file.

Exercise 2
Using the commands described so far, put a few short pieces of text

onto disk files and use the read command to reload these.

The current line QoL orvty!

Suppose that the text buffer contains the three lines we had above
and you have just typed 1,2p. The editor has just printed the first
two lines. Try typing just

p (no line numbers)
The result is that

all good men to come

is printed, which is our second line. More significantly, it is the
last line that we did anything to (we printed it). We can repeat

91 <>

OXFORD PASCAL

this p command and line 2 will continue to be printed out. The
editor maintains a record of the last line that you did anything to
and allows you to use it as an implicit line number, rather than
specifying one explicitly. This line is referred to by the shorthand
notation

. (pronounced "dot")

Dot is a line number just like $ and it is referred to as the
current line. We can use it in many ways, for example:

-.$p

This will print all of the lines in the text buffer fram the current
line to the last (in this case lines 2 and 3).

Most commands affect the value of dot. The print command sets dot to
the last line printed. In the above case we arrive at .=$=3.

Dot is most useful when it is used in combinations like
.+1lp

which will print the next line. Remember that the p can be amitted
so this command is equivalent to .+l. This gives us a useful way to
list through the text buffer. We could also use:

=

to print (and move back to) the previous line in the buffer. Another
useful command which will print the previous three lines of the text
buffer is:

—35p

Remember that all of these commands change dot to the last line
printed. Before looking at any new commands we will summarise a few
things about dot and the print command. P can be preceded by 0, 1 or
2 line numbers, If no number is given, then the current line is
printed. If one number is printed then that line is printed and dot
is moved to that line. If two numbers are given then all the lines
between the two numbers (inclusively) are printed and dot is moved
to the last line printed. Also if two lines are specified then the
first must be less than or equal to the second (see Exercise 1).

Finally the editor allows us to use a further degree of shorthand to
move back or forward by one line. Typing RETURN will cause the next
line to be printed - it's equivalent to .+lp. Try typing = followed
by return; it is the same as .-1lp.

To find out where you are in the buffer type '.=' and the value of
dot is printed.

92

OXFORD PASCAL

Deleting lines the 'd' command

If we want to get rid of some of the lines in the text buffer we use
the 'd' command. Just like the p command it can be preceeded by 0, 1
or 2 line numbers. It behaves in the same way except that it deletes
lines rather than printing them. Hence:

2,%d

will delete all the lines fram line 2 to the end of the buffer. We
can check this by typing 1,$p. Notice that $=1 now.

Dot is set to the line after the last line deleted unless this was
the last line in which case dot is set to the new last line.

Exercise 3

Experiment with the p, a, r, w and d commands until you understand
fully how they work and how dot, $, and line numbers are used.

Notice that the r command sets dot to line 1. If you are
adventurous, try putting a line number before the 'a' command (e.g.
3a). You will find that text is appended after the line number
specified rather than after the current line. Dot is set to the last
line of text which is added.

Modifying text the subsitute command 's'

We now come to one of the most important commands available which
allows us to change text strings. The command is used to change
single letters or groups of letters. An example of its use is for
correcting spelling or typing mistakes. Suppose that line one said
"Now is th time for". We can insert the 'e' into 'the' with the
following command:

1s/th/the/

This command means "in line one substitute 'the' for the first
occurrence of 'th'." To verify that we have achieved the correct
result, type 'p' and the line will be printed. Notice that the
substitute command must move dot to that line. The general form of
the substitute command is

starting line, ending line s/string l1/string 2/
and string 2 is substituted for string 1 for the first occurrence of

string 1 on each line between the starting line and ending line. The
rule for line numbers is exactly the same as for the print command,

93 <>

OXFORD PASCAL

and dot is set to the last line altered. This is a trap for the
unwary because if no substitution occurred then dot is not moved. We
can use

1,$s/speling/spelling/
to correct the first spelling mistake in the word 'spelling' on each

line. This is useful for people who are consistent mis-spellers! If
no line number is used then the substitution occurs on line dot,

e.g.
s/something/something else/p
This makes a correction on the current line and prints it (a 'p' can
optionally follow at the end of the substitute command). It is also
possible to say:
s/something//

which will delete 'something' from the current line.

Exercise 4

Experiment with the substitute command. In particular use it on a
string which occurs sevaral times on a line. Try this:

a
the other side of the coin
s/the/on the/
You will get:
on the other side of the coin
A substitute command changes only the first occurrence of a word on

a line. You can change all occurrences of a word by adding a 'g'
(meaning global) to the s command like this:

B fa-t /gp

If you want to change a word or phrase with a '/' in it, you must
precede the slash with a backslash, e.g.

s/5 /3/5+3/

will change 5/3 to 5+3.
Also to change a in the text you must put in the string, e.g.

94

OXFORD PASCAL

s/ //backslash slash/
will change / to the words backlash slash.

Context searching - /----/

Now that we have mastered the substitute command we can move on to
discover another way of specifying line numbers. Suppose we have
our original three lines of text in the buffer:

Now is the time for
all good men to come
to the aid of their party.

and we wanted to find the line containing 'their' and change it to
'the'. Of course, with only three lines of text in the buffer it is
fairly easy to do this, but with a large buffer full of text things
would not be so easy; context searching is simply a good method of
specifying a line without regard for its number by giving some
context on it. The format used is:

/string of charaters we want to find/
More specifically for the example mentioned above

/their/
is sufficient to find the desired line. Having found the required
line, the editor moves dot to that 1line and prints it for
verification, giving: :

to the aid of their party
In doing the search , the editor looks for the next occurrence of
the specified string. This means that is starts searching from line
.+l to line $ and then it wraps around and searches from line 1 to .
If the required match does not occur, then the usual error message
is printed (?) and dot is unchanged. We can use a context search
anywhere that a 1line number is required so we can acheive the
required alteration by using

/their/s/their/the/p

This command has three parts, a context search, the substitute
command and the print command.

A context search can also take the form of a simple expression so in
our example text, the following are all references to line 2.

/Now/+1, /good/, /party/-1, $-1, 2

95 <>

OXFORD PASCAL

The choice of how to specify a line is dictated purely by
convenience, for example:

/Now/, /Now/+2p

will print 3 lines. (In fact it prints the whole buffer.)

Exercise 5

Experiment with context searching. Try a body of text with several
occurrences of the same string of characters and scan through it
using the same context search. Notice that if the text string occurs
twice on the same line then successive searches find different
lines. Use context searches to specify line numbers for commands
other than substitute. Beware of finding a string on a different
line from the one you expect!

Change and Insert - ¢ and i

The change command is used to replace one or more lines with any
number of new lines and the insert command is used for inserting a
group of one or more lines. For instance to change lines '.+1'
through '$' to something else, type

++1,8¢c

--— type the new lines of text here ---

The text typed between the change command and the . will take the
place of the original lines. Dot is set to the last new line
entered. The single '.' at the end of the command shown is used in
the same way as the '.' in the append command to leave the text
entry mode.

Insert is similar to append in that it puts fresh lines into the
text buffer but it puts the text before the line specified. Dot is
set to the last line inserted.

Exercise 6

Change is rather like a combination of delete followed by insert.
Experiment to verify that

96 <>

OXFORD PASCAL

start,end d
i
—-——-text----

is like

start,end c
——-=text----

Experiment with a and i to see that they are similar, but not the
same. You will observe that

line number a
————text----

appends after the given line number, while

line number i
————text----

appends before it. Notice that if no line number is given , a
appends after line dot , while i inserts before line dot.

Moving text around the 'm' command

The final command allows us to move groups of lines around in the
text buffer. For instance, the order of procedures can be easily
changed in a Pascal program, especially if we use context searches
to specify the line numbers. Unlike the commands we have used so
far, the move command requires three line numbers. The format of the
command is:

start line, end line m after this line

It moves all of the lines between the start and end lines so that
they follow the third line number, e.g. 1,3m$ will move the first
three lines of text to the end of the buffer. Dot is set to the last
line to be moved. The third line number must be exclusively outside
the range of the start and end lines. If the text buffer contained :

97 <>

First paragraph
;;;-of first paragraph
Second paragraph
;;anof second paragraph
then we could reverse the two paragraphs by the following command:
/Second/,/second/m/First/-1

Notice the '-1'. This is because the moved text goes after the lines
speci fied.

Summary of commands and line numbers

The general form of editor commands is the command name, perhaps
preceded by one or two line numbers. Only one command is allowed per
line, but a p command may follow the search command.

a (append)

Add lines to the buffer (at line dot, unless a different line is

specified). Appending continues until '.' is typed on a new line.

Dot is set to the last line appended.

c (change)

Change the specified lines to the new text which follows. The new
lines are terminated by a '.'. If no lines are specified, replace
line dot. Dot is set to the last line changed.

d (delete)

Delete the lines specified. If none are specified, delete line dot.
Dot is set to the first undeleted line, unless $ is deleted, in
which case dot is set to $.

i (insert)

Insert new lines before specified line (or dot) until a '.' is typed
on a new line. Dot is set to the last line inserted.

98

m (move)

Moves lines specified to after the line named after m. Dot is set to
the last line moved.

p (print)

Print specified lines. If none specified, print line dot. A single
line number is equivalent to 'line-number p'. A single return prints
'.+1', the next 1line. An ~ followed by return is equivalent to
l__lpl

g (quit)

Exit fram the editor.

r (read)

Read a named file into the buffer. Dot is set to the first line
read.

s (substitute)

s/string 1/string 2/ will substitute the characters of 'string2' for
'string 1' in specified lines. If no line is specified, make
substitution in line dot. Dot is set to the last line in which a
substitution took place, which means that if no substitution took
place, dot is not changed. S changes only the first occurrence of
string 1 on a line; to change all of them, type a 'g' after the
final slash.

w_(write)

Write out buffer to a named disk file. Dot is not changed.

~.= (dot value)

print value of dot. ($= prints value of '$'.)

/===-/ (context search)

Search for next line which contains this string of characters. Print
it. Dot is set to line where string found. Search starts at '.+1',
wraps around from '$' to 1, and continues to dot, if necessary.

99

PASCAL has become the world's mo
programming language. It 15 used in near}
universities and recommended by educational
authorities in the UK, Europe and the USA

A programmer who learns PASCAL can easily
master other structured languages such as
MODULA 2, C, PLI, BCPL, and ALGOL

AREAL PASCAL COMPILER
FOR YOUR MICRO.

OXFORD PASCAL is an extended fu
implementation of this highly acclaimed
programming language. In PASCAL you can write
programs which could never be implemented in
BASIC or assembler

OXFORD PASCAL includes

Fully recursive procedures and functions
Record structures

Sets

Type definitions

WHILE, FOR, REPEAT-UNTIL loops
CASE statements

Files

Full linker

nfact, everything in Jensen & Wirth's original
definition of the language. In addition, OXFORD
PASCAL provides many extensions.

EXTRA

OXFORD PASCAL features a whole range of
extensions designed to make maximum use of your
Amstrad, These include Hex constantsand I/O, Bit
manipulation, Random access files, Random
numbers, Program chaining, Separate compilation,
Linking and more

Oxford Computer Systems (Software) Ltd.
Hensington Road, Woodstock, Oxford OX7 IR, England.
Telephone (0993) 812700 Telex 83 147 Ref. OCSL

CPC 6128
PCW 8256

OXFORD PASCAL IS FAST
OXFORD PASCAL compiles down to FAST
COMPACT P-code, giving you the real speed and
power of Pascal, together with the ability to compile
very large programs

OXFORD PASCALIS \
COMPACT \

Because it compiles into P-code, OXFORD PASCAL \
reduces progra f
possible. Infact it
your 64 than any other language, and
programs become too large, you can
CHAIN command to overlay limitless additiona
programs without losing data

DISC AND RESIDENT
COMPILER

Under the resident compiler, programs can be
written and run on the spot without dis

\
\

use the

uld your /

tion is fast enough to make using the system
TRACE
low execution 0 gram

option allows you
with direct reference to the source code

Under the Disc compiler very large program
developed which utilise the whale of memory
Pascal object code. The LINKER allows complex
programming tasks to be broken up into easily
manageable, separately compilable files.

®CPIM is a registered trademark o

Research. /

	Oxford Pascal (E)
	IMG_0100_NEW

