CBASIC® Compiler (CB80™)

Language

Programming Guide

Ti
DIGITAL
RESEARCH"

CBASIC® Compiler (CB80™)

Language

Programming Guide

COPYRIGHT

Copyright © 1982 by Digital Research. All rights reserved. No part of this publica-
tion may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the
prior written permission of Digital Research, Post Office Box 579, Pacific Grove,
California, 93950.

This manual is, however, tutorial in nature. Thus, the reader is granted permission
to include the example programs, either in whole or in part, in his own programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Further, Digital Research reserves the right to revise this
publication and to make changes from time to time in the content hereof without
obligation of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CBASIC, CP/M, CP/M-86, and CP/NET are registered trademarks of Digital Research.
CB80, CB86, Concurrent CP/M-86, LK80, MP/M, MP/M 1I, MP/M-80, MP/M-86,
RMAC, and SID are trademarks of Digital Research. Intel is a registered trademark
of Intel Corporation. Z80 is a registered trademark of Zilog, Inc.

The CBASIC Compiler (CB80) Language Programming Guide was prepared using
the Digital Research TEX Text Formatter and printed in the United States of America.

First Edition: January 1983

Foreword

The CBASIC® Compiler is a compiler version of the CBASIC programming lan-
guage. For the software developer interested in maximizing the execution speed of
commercial applications programs, the CBASIC Compiler is an excellent choice.

Digital Research designed the CBASIC Compiler for use under single-user, multi-
user, and concurrent operating systems based on both 8-bit and 16-bit microprocessors.

® 8-bit CBASIC Compiler, CB80™, runs under the CP/M® versions 2 and 3,
MP/M™, and CP/NET® operating systems based on the Intel® 8080, 8085,
or Zilog Z80® microprocessor.

® 16-bit CBASIC Compiler, CB86™, runs under the CP/M-86®, MP/M-86™,
and Concurrent CP/M-86™ operating systems based on the Intel 8086, 8088
family of microprocessors.

The CBASIC Compiler Language Programming Guide provides a short demon-
stration program to help you get your CBASIC Compiler system up and running.
The manual is divided into five sections.

Section 1 is an introduction and demonstration program.

Section 2 describes the compiler, CB80.

Section 3 describes the link editor, LK80™.

Section 4 describes the indexed library and the library manager utility program.
Section 5 explains the machine-level environment of the CBASIC Compiler.

Use this Programming Guide in conjunction with the CBASIC Compiler Language
Reference Manual. Together, the manuals provide all the information you need to
use the CBASIC Compiler to its full potential.

Digital Research is very interested in your comments on programs and documen-
tation. Please use the Software Performance Reports and the Reader Comment card
to help us provide you with the best microcomputer software and documentation.

ﬂﬁﬂlf!’t——iﬁ-ﬁﬁf !Agzgag mm
_ﬂéﬁkmm_m thmﬁ‘}w 3

Table of Contents

Getting Started with the CBASIC Compiler

11 SCOMPONENTS: &cv. s 'veisa's Ot R el P i e s g O 1
R b e e e B S B B e i 2

The Compiler, CB80

b P T T e L e R T e PO S TR C o R R e 5
LY CRBO COMMantd Lines . i .civiie oo ameeiemsamsmrelarsiiemlofals 7
I e @cr i e g e o A m T L i - SN TSR e O W 74
e o T e e e i T e Bt T SRt LR e S e 8
2.2.1 Sopiree Code Compiler DIreCtives .. uiieesiosis eniaeiis suaans 8
222 CBB0Command EmeETOgIes | oo oo 10

The Link Editor, LK80

e U) G T T T R SRR RN R N - 2ok AT s W G AN 15
311 T ERB0 ComIand IS o s v ensihaanis she s els s 16
3 R R I Ors ¢ . L e L S N T 18
C b e e e e B L e e S 18
3.3 FProducing OVERIaYS - 5 i e e e s s 20
3.4 Linking Assembly Language ROUUINES .. .vvivvisnansosssonsnnsivnse 21
The Library
AL CBBOIRE . it i e e b e e e s R e e e 23
4.1.1 Dynamic Storage Allocation Rourines:.c.ceetviaesesss 24
L s T L T L e e G e B S L e e 24
4.2" The Library Mapager Utlity, LIB ..o ciiscnsinnnssonmmseonsn s 25
4,21 LIB Manager Command Linescoiiensenvoesssnnsesn 25

Machine-level Environment

Si1 MEOry AHOCAEION. oo i ol s iceionsias vie sibsn duian st sisais ols didisiaiaat 27
5.2 Ineeinal Peta REDIESENEAtION <oivivnsviaee s sossiseonsesmas s s iseiss 30

o (R o L

m

Table of Contents (continued)

5.3 Parameter Passing and Rettohibg Valnes 0o S0 Vo VAL Shiill. 33
S4 RELe Rormar wE s - e M s e e et L R 34
55 IRE P TORBEE L o oo oo e onsvns inm s e ls v Tk s 37
Appendixes
Implementation Dependent Valuescccoviiiiiniiiinnnnnnnn. 39
Compiler ERor MBS . - i s s hsnss sl deg e e o 41
EKBO Brror MIESSames . oot i s caliisss i e e St el i v 53
Exectution Eror=MEsmapes . 0o i s si s st s bt 57
LB Error M sl o & o i e e T o s S s e e b L s e e 61

(]

g
e

'H

ik
L

[<8 ¥y

moo
Ht

Table of Contents (continued)

List of Tables

S L e S e T S T e R 11
L e L R e Rl e 19
Speciallanle Fremiss oo st sty s e el bk v s i o sole Wi 35
Implementation:Dependent Values .. .ccvoivvnneemassnsimessnieossens 39
File Systetniand Memory Space Errors «.oc o o sibinis s s ms s sasaiiems 41
GO S IGRPETTO T NIESSARESE Miiiar tiins Jfoidiis e ls winminiprels it sie s b s i aaotb's 43
THCS RO NASSSARESIT ottrn iy i Jomimsdnniors vipismasenn s It s s s 53
ERIErrtrt Codes St e Td s dubun o v e i wesinp s s e S s s 57
B R rro e N e A B, = e o s el stk Taralias il liaarie wiaotin miaile atas ik piniss 61

List of Figures

CPI/M Memory - AHocation 0 v bn e vaiaiee siaisies sisaia oja st 28
Rl um Ber SO A s T ann e s e P e o B st e P Ao s 30
{117 Te L P T N R e 31
STEITHE SEOTAIE - oot s vian e 5o e 570 s e S0 VRS R aTE o e S o w B ae S e S 32

Section 1
Getting Started with the CBASIC
Compiler

A compiler is a computer program that translates high-level programming language
instructions into machine readable code. The compiler takes as input a user-written
source program and produces as output a machine-level object program. Some com-
pilers translate a user-written source program into a program that a computer can
execute directly. The CBASIC Compiler system, however, uses a link editor and a
library in addition to the compiler. Together, the three components translate your
CBASIC source code file into a directly executable program using your microcompu-
ter’s memory space as efficiently as possible. The system enables you to modularize
programs for quick and easy maintenance. The result is a programming system that
rivals the performance of systems based on much larger machines.

The primary advantage that compilers provide over other methods of translation
is speed. Compiled applications programs execute faster than interpreted programs
because the compiler creates a program that the computer can execute directly.

1.1 Components

The three components that make up the CBASIC Compiler system are listed in the
directory of your CBASIC product disk along with three compiler overlay files and
the library manager utility:

B The compiler, CB80, translates CBASIC source code into relocatable machine
code modules. Source programs default to a .BAS filetype unless specified
otherwise. CB80 generates .REL files.

® The link editor, LK80, combines the relocatable object modules that the
compiler creates and relocatable routines from the library into a directly
executable program with optional overlays. LK80 generates .COM files.

® The library provides relocatable routines that allocate and release memory,
determine available memory space, and perform arithmetic operations and
input/output processing.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 1

7
)
8]
=
O
3

1.2 A Demonstration CBASIC Compiler (CB80) Programmer’s Guide

1.2 A Demonstration

The following demonstration program can help you learn how to compile, link,
and run your first CBASIC program. The instructions are for the CBASIC Compiler
on a CP/M-based system with two floppy-disk drives. You should already be familiar
with CP/M and a text editor.

Make a back-up copy of your master CBASIC Compiler product disk. Place your
operating system disk in drive A and a copy of your CBASIC Compiler disk in drive
B.

e

Write the source program.

Using your text editor, create a file named TEST.BAS on your CBASIC
Compiler disk in drive B. Enter the following program into TEST.BAS exactly
as it appears below:

PRINT

FORIX=1T0 10
PRINT I%3 "TESTING THE CBASIC COMPILER!"

NEXT IZ
PRINT
PRINT "FINISHED"

END
Compile the program.

To start CB80, enter the following command. Be sure drive B is the default
drive.

B>CBBO TEST

CB80 assumes a filetype of .BAS for the file you specify in the compiler
command line unless otherwise specified. A sign-on message, a listing of
your source program, and several diagnostic messages display on your

terminal.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 1.2 A Demonstration

CBASIC Compiler CBBO Version 1l.x
Ser. No. 000-0000 CoPyridht {c) 1882
Digital Research: Inc. All rigdhts reserved
end of rpass 1
end of Ppass 2
1: 003eh PRINT
Za- D08 h FOR: 1% = 1 TO 106
3: 004ah PRINT I%3 "TESTING THE CBASIC COMPILER!"
4z 0058h NEXT 1%
S: 00B4h PRINT
B: O00B7h PRINT "FINISHED"
7: 0070h END
end of compilation
no errors detected

code area size: 112 0070h
data area size: 2 0002h
common area size: O 0000h

symbol table space remaining: 318390

Section 2.1 describes the various parts of the listing. The message no errors
detected indicates a successful compilation. CB80 creates a relocatable file
for the TEST.BAS program. The directory for disk B should have the new
file TEST.REL.

3. Link the program.

To start LK80, enter the following command. Be sure drive B is the default
drive.

B>LKBO TEST
LK80 assumes a filetype of .REL for the file you specify in the linker com-

mand line. A sign-on message and several diagnostic messages display on
your terminal.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 3

1.2 A Demonstration CBASIC Compiler (CB80) Programmer’s Guide

LKBO VYersion 1.x
Sers. No. 000-0000 Copyright (c) 1982
Digital Research: Inc. All ridhts reserved

code size: 1200 (0100-12FF)
common size: 0000

data size: 0166 (1300-14B535)
symbol table space remaining: 124F

If you get no error messages, the program has been linked successfully.
LK80 creates a directly executable program. The directory for disk B should
have the new file TEST.COM.

4. Run the program.

To run the TEST.COM program, enter the following command. Be sure
drive B is the default drive.

B>TEST

The following output should appear on your terminal:

1 TESTING THE CBASIC COMPILER!
2 TESTING THE CBASIC COMPILER!
3 TESTING THE CBASIC COMPILER!
4 TESTING THE CBASIC COMPILER!
5 TESTING THE CBASIC COMPILER!
6 TESTING THE CBASIC COMPILER!
7 TESTING THE CBASIC COMPILER!
8 TESTING THE CBASIC COMPILER!
9 TESTING THE CBASIC COMPILER!
10 TESTING THE CBASIC COMPILER!

FINISHED

End of Section 1

4 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 2
The Compiler, CB80

CB80 consists of an executable file with filerype .COM and three overlay files.
Your CBASIC Compiler product disk should contain the following four files:

= CB80.COM
® CB80.0V1
® CB80.0V2
m CB80.0V3

When compiling a CBASIC program, all four files must be on the logged-in drive.
The source program file can be on any logical drive.

2.1 Compiling Programs

CB80 takes a CBASIC source program as input and generates a relocatable object
file. During compilation, CB80 creates the following temporary work files with a
.TMP filetype:

PA.TMP
QCODE.TMP
DATA.TMP

Unless compilation is unsuccessful, you never see these temporary files listed in a
directory. CB80 erases the files automatically when compilation is finished. CB80
also erases the temporary files if they are on disk before you start the compiler.

The size of the . TMP files varies according to the size of the source program. The
amount of temporary space required is approximately equal to the amount of space
the source program occupies. If you do not have enough work space on disk for the
compiler, you can break up large programs into modules and compile each module
separately.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 5

v
o
2]
=
<
N

2.1 Compiler Programs CBASIC Compiler (CB80) Programmer’s Guide

The following is an example of a CB80 listing:

CBASIC Comepiler CBBO Version 1.x
Ser. No. Copyrisht (e) 1982
Digital Researchs Incs. All rights reserved

1: 003eh PRINT
I 004ln Fik T2 =1 10 10
: 004ah PRINT 1X% "TESTING THE CBASIC COMPILER!"
4: 00568h NEXT 11X
S5: 00B4h PRINT
6: O0O0B7h PRINT "FINISHED"
7: 0070h END
end of compilation
no errors detected

code area size: 112 0070h
data area size: 2 0002h
common area size: O 0000h

symbol table srpace remaining: 31880

Certain phases of the compilation process are combined into a module called a
pass. CB80 is a three-pass compiler. Following the sign-on message, CB80 indicates
the completion of the first two passes with a message. The program listing includes
the line numbers, relative addresses for the code that each line generates, and the
actual source code lines. In the preceding listing, 1: is an example of a line number.
003e¢h is a relative address for the relocatable code that the first PRINT statement
generates.

CB80 prints the total number of compilation errors detected in the program fol-
lowing the message end of compilation. The message no errors detected, however,
indicates a successful compilation. The last four messages indicate the amount of
space CB80 allocates for certain segments of data. Refer to Section § for an expla-
nation of memory allocation. If CB80 detects errors, the relative addresses and the
memory allocation messages do not print.

6 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 2.1 Compiler Programs

To complete the compilation process, CB80 generates a relocatable object file. The
relocatable file has the same filename as the source program and has a .REL filetype.
The .REL file requires approximately the same amount of space as the source pro-
gram. If the source program contains errors that prevent a successful compilation,
CB80 does not generate the .REL file.

2.1.1 CB80 Command Lines

The command line starts CB80, specifies the file to compile, and passes special
information in the form of compiler directives. The following command line compiles
the source program in a file named TEST. CB80 assumes a filetype of .BAS unless
otherwise specified.

CBBO TEST

Enter a complete file specification to override the .BAS filetype. The following
command line compiles the source program in a file named TEST.PR1. Remember,
source files cannot have a .REL filetype.

CBBO TEST.PR1

Source files can be on any logical disk drive. The following command line compiles
the source program TEST.PR1 from drive D:

CBBO D:TEST.PR1

If you type an incorrect command line or neglect to enter a filename, CB80 indi-
cates the error with the message invalid command line.

2.1.2 Compiler Errors

CB80 reports three different types of compiler errors. The first type, file system
and memory space errors, includes mistakes such as invalid command lines, read
errors, and out of memory conditions. CB80 indicates file system and memory space
errors with literal messages such as disk full and symbol table overflow. Refer to
Appendix B, Table B-1, for a complete listing of file system and memory space error
messages.

The second type, compilation errors, includes misuses of the CBASIC language
such as invalid characters, improper data type specifications, and missing delimiters.
CB80 inserts an integer value in the compiler listing of the source program to indi-
cate the occurrence of a compilation error. The integer corresponds to an error
description listed in Appendix B, Table B-2.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 7

21 Compiler Programs CBASIC Compiler (CB80) Programmer’s Guide

The third type, fatal compiler errors, should never occur during your experience
with the CBASIC Compiler. CB80 indicates a fatal compiler error with the following
message. The XXX stands for a three-digit integer value.

FATAL COMPILER ERROR XXX
NEAR SOURCE LINE XXXX

If this error message occurs during compilation of your CBASIC program, contact
the Digital Research Technical Support Center. Please report the three-digit integer
and the circumstances under which the error occurs.

2.2 Compiler Directives

Compiler directives are special instructions to CB80. The CBASIC Compiler sup-
ports two different ways to specify compiler directives: source code compiler direc-
tives and command-line toggles.

2.2.1 Source Code Compiler Directives

Source code compiler directives are special keywords that do not translate into
executable code. All source code compiler directives begin with a percent sign. You
cannot place blanks between the percent sign and the rest of the keyword. Only
blanks and tab characters can precede a directive. Source code compiler directives
cannot appear on the same line with CBASIC statements or functions. CB80 ignores
all characters on the same line that are not part of the directive. A source code
compiler directive cannot span more than one line with a continuation character.
You cannot label source code compiler directives.

The CBASIC Compiler supports the following six source code compiler directives:

%NOLIST
%LIST
%EJECT
%PAGE
%INCLUDE
%DEBUG

8 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 22 Compiler Directives

Normally, CB80 generates a listing of the source program during compilation. The
%NOLIST directive tells CB80 not to list anything that follows the %NOLIST in
the program. The %LIST directive tells CB80 to resume the listing. Use %LIST and
%NOLIST any number of times in a program. Toggle B described in Section 2.2.2
suppresses all listings regardless of any directives in the source code.

The %EJECT directive tells CB80 to continue the program listing at the top of the
next page of paper. %EJECT works only when you direct the listing to a printer.
CB80 ignores %EJECT if the %NOLIST directive is in effect, or if you direct the
listing to the console or a disk file.

The %PAGE directive sets the page length for a listing directed to a printer. The
page length you specify .must be an unsigned integer placed after the %PAGE key-
word, as shown in the following example:

LPAGE 40

The %INCLUDE directive tells CB80 to include the code from a specified source
file along with the original compiling program. The included source file is incorpo-
rated into the original program immediately following the %INCLUDE. Specify the
filename, the filetype, and the drive that holds the file. CB80 assumes the default
drive and a .BAS filetype if not specified otherwise. The following examples show
three variations of %INCLUDE:

ZINCLUDE CONDEF
LZINCLUDE CONDEF.INC
ZINCLUDE D:CONDEF.INC
You can nest included files six deep. The maximum nesting depth depends on your

particular implementation of the CBASIC Compiler. Refer to Appendix A for current
implementation dependent values.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 9

22 Compiler Directives CBASIC Compiler (CB80) Programmer’s Guide

The %DEBUG directive works with three command line toggles: the I, N, and V
toggles. You can switch these three toggles on or off from within the program source
code. To turn a toggle on, place the toggle letter after the % DEBUG keyword. To
turn a toggle off, place the toggle letter preceded by a minus sign after the % DEBUG
keyword. The following examples show variations of the %DEBUG directive:

ZDEBUG 1I
ZDEBUG -1
ZDEBUG INV
ZDEBUG -I-N-V

2.2.2 CB80 Command Line Toggles

Command line toggles are single-letter compiler directives that you specify in the
CB80 command line instead of in the source program. Once a toggle is set, it nor-
mally remains set through the entire compilation process. The %DEBUG directive
can change the I, N, and V toggles during compilation. Place letters within brackets
following the file specification in a CB80 command line. Letters can be lower- or
upper-case. If you enter conflicting toggles in a command line, the last one read from
left to right takes effect. Certain toggles require an additional parameter enclosed in
parentheses. The following examples show several ways to specify command line
toggles:

CBBO TEST [B1

CBBO0 TEST.BAS [Bs Ps» S1
CBBO FILE.DAT [BPW(72)1
CB80 CALCS.PRG [N] [O01 [P]

CBB80 DATA.OVL [pon 1

10 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 2.2 Compiler Directives

CB80 supports the fifteen command line toggles listed in the following table:

Table 2-1. CB80 Toggles

Toggle Instruction
B Suppress listing of the source file.
C Change the default %INCLUDE file disk.
F Send the source listing to a disk file on the same drive

as the source file.

I Interlist the generated code with the source file.
L Set the page length for printed listings.

N Generate code for line numbers.

O Suppress the generation of the object .REL file.

P List the source file on the printer.

R Change the disk that the .REL file is written to.
S Include symbol name information in the .REL file.
T List the symbol table following the source listing.
U Generate error messages for undeclared variables.
v Put source code line numbers into the .SYM file.
W Set the page width for printed listings.

X Change the disk used for the work files.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 11

22 Compiler Directives CBASIC Compiler (CB80) Programmer’s Guide

The B toggle tells CB80 not to list the source program on the console screen.
However, compiler errors and statistical data concerning size of code and data areas
display on the screen. The B toggle overrides other toggles that control compiler
output.

The C toggle specifies the default drive for include files. Enclose the new drive
specification in parentheses following the C. If a drive has been specified in the
%INCLUDE directive, the C toggle has no effect. The C toggle allows program
development to be independent of your hardware configuration.

The F toggle tells CB80 to send the source listing to a disk file that is on the same
drive as the source file. The new file has the same filename as the source file and has
a .LST filetype.

The I toggle interlists compiler-generated code with the original source statements.
Compiler-generated code uses standard 8080 mnemonics.

The L toggle changes the page length for a listing directed to a printer. Enclose the
new length in parentheses following the L. The length must be an unsigned integer,
as in the following example:

CBBO TEST [L(50)1

The N toggle generates code that saves the current line number for each physical
line in a source program. The code enables the ERRL function to return the line
number when an execution error occurs.

The O toggle tells CB80 not to generate the relocatable object file. If a compiler
error occurs, CB80 does not generate the .REL file.

The P toggle prints the program listing on the printer. CB80 sends a form-feed
before printing the first page. CB80 prints the page number and the source filename
at the top of each page.

The R toggle specifies which drive to place the .REL file on.
The S toggle places all information on program variables and line labels into the

.REL file. The link editor uses the information to generate a .SYM file. You can use
the .SYM file with the Digital Research Symbolic Instruction Debugger, SID™.

12 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 2.2 Compiler Directives

The T toggle lists the symbol table immediately following the source program
listing.

The U toggle generates an error message if a variable name does not appear in an
INTEGER, REAL, or STRING declaration. Use the U toggle to locate misspelled
identifiers.

The V toggle places the source code line numbers into the .SYM file.
The W toggle changes the page width for a listing directed to the printer. Initially,

the width is set to 80 columns. Enclose the new width in parentheses following the
W. The width must be an unsigned integer.

CBBO TEST [W(70)1
The X toggle specifies a drive for the temporary work files. Normally, CB80 places
the work files on the same drive as the source file. Enclose the new drive specification

in parentheses following the X. The drive is specified by a single lower- or upper-
case letter.

CBE0 TEST [X<D)1

CB80 evaluates toggles from left to right. This means a subsequent directive can
override any earlier one. In the following example, CB80 sends the listing to the
printer.

CB80 TEST [BP1

In the following example, CB80 suppresses the listing.

CBBO TEST L[PB1

End of Section 2

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 13

End of Section 2 CBASIC Compiler (CB80) Programmer’s Guide

14 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 3
The Link Editor, LK80O

LK80 is a linkage editor designed specifically for use with CB80. LK80 combines
relocatable object modules that CB80 generates with relocatable modules from the
indexed library, CB80.IRL, into an executable program with optional overlay files.
Your CBASIC Compiler product disk should contain the following two files:

LKB80.,COM
CB80O.IRL

When linking a CBASIC program, both files must be on the default drive.

3.1 Linking Modules

LK80 converts a .REL file into an executable .COM file. During linking, LK80
automatically searches the default disk for the indexed library file. LK80 includes
any library routines that the compiled program requires in the executable program.

Following a sign-on message, LK80 prints four messages that indicate the amount
of space LK80 allocates for the program. Refer to Section 5 for an explanation of
memory allocation. The following example shows the console display during linking:

LKBO Version 1.x
Ser. No. 000-0000 Coryright (c) 18982
Digital Researchs Incs All rights reserved

code size: 1200 (0100-12FF)
common size: 0000

data size: 0166 (1300-14863)
symbol table space remaining: 124F

LK80 determines and displays the four values that follow the sign-on message as
hexadecimal numbers. The values in parentheses are the memory location assigned
to each area.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 15

wn
m
0
=
o
=
w

3.1 Linking Modules CBASIC Compiler (CB80) Programmer’s Guide

To complete the linking process, LK80 generates the executable program and a
symbol location file with filetype .SYM. The executable program has the same file-
name as the first .REL file listed in the LK80 command line and has a filetype of
.COM. You can specify a different filename for the executable program in the com-
mand line. You can use the .SYM file with the Digital Research symbolic debugging
program, SID.

3.1.1 LKS80 Command Lines

The command line starts LK80 and specifies the relocatable files to link. The
following command line links the modules in a file named TEST.REL with the run-
time subroutine library and generates an executable program file named TEST.COM.
LK80 assumes a filetype of .REL if not specified otherwise.

LK80 TEST

You can rename a file in the LK80 command line using an equal sign. The follow-
ing command line links the modules in the file named TEST.REL but generates an
executable file named TESTPGM.COM.

LKBO TESTPGM=TEST

You can specify which drive holds the .REL file to link, and you can specify a
drive for LK80 to write the executable file to. The following command line produces
the same executable file as in the previous example, but LK80 links the TEST.REL
file from drive D and writes the TESTPGM.COM file to disk A.

LKBO A:TESTPGM=D:TEST

LK80 can link any program that occupies less than 64K bytes of memory unless
the length of symbols exhausts the space reserved for the symbol table. You can link
several relocatable files into one executable program. However, when combining
several files, only one file can contain executable statements. All other files must
contain only multiple-line functions. In the following command line, TEST is the
executable program, and ONE, TWO, and THREE contain multiple-line functions.
LK80 links all four relocatable files into one executable program named TEST.COM.

LKBO TESTs ONE+ TWO: THREE

16 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 3.1 Linking Modules

You can specify a filetype other than .REL for files in the command line if the files
are relocatable object files. LK80 aborts the linking process if any of the files are not
relocatable object files. In the following command line, TEST.A is the executable
program, and ONE.B, TWO.C, and THREE.D contain multiple-line functions. LK80
assumes all four files are relocatable object files and links them into one executable
program named TESTPGM.COM.

LKB0O TESTPGM=TEST.A:ONE.B,TWO.C,THREE.D

If you generate your own subroutine library using LIB86, you must specify the
library in the LK80 command line. The following example links the library LIB1.IRL
into TESTPGM, along with ONE.REL and TWO.REL.

LKBO TESTPGM=0ONEsTWO:LIB1.IRL
Note that you must specify the .IRL filetype for libraries.

LK80can link up to 60relocatable files at one time. However, the total length of the
command line cannot exceed 128 characters. In cases where a command line exceeds 128
characters, you can shorten filenames, or you can place the command line in a disk file.
There is no limit on the length of a command line if LK80 reads it from a disk file.

Create the command line file using any text editor. Do not enter the characters
LK80 in the disk file. List each relocatable object file as you would in an ordinary
command line. You can place tab characters, carriage returns, and line-feeds any-
where in a command line file. Use the backslash to document large command line
files. LK80 ignores all characters that follow a backslash on the same line. Then
specify the disk file in an LK80 command line as shown in the following example:

LKBO $ CMDLINE.LIN

The preceding example tells LK80 to read the rest of the command line from a disk
file named CMDLINE.LIN. The dollar sign must follow the LK80. At least one space
must separate the dollar sign from the file specification. The command line file can
have any filename and filetype.

3.1.2 LK8O Errors

LK80 reports two different types of errors. The first type includes mistakes such as
improper command lines and out of memory conditions. LK80 indicates these errors
with a literal message. Refer to Appendix C, Table C-1, for a complete listing of
LK80 error messages and descriptions.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 17

3.1 Linking Modules CBASIC Compiler (CB80) Programmer’s Guide

The second type, LK80 failures, should never occur during your experience with
the CBASIC Compiler. LK80 indicates a failure with the following message. The N
stands for an integer value.

LK80 FAILURE N
If the above error message occurs during linking of your CBASIC program, contact the
Digital Research Technical Support Center. Please report the number and the circum-
stances under which the error occurs.
3.2 LK80 Toggles
LK80 toggles are single-letter directives that you specify in the LK80 command
line. Once a toggle is set, it remains set through the entire linking process. Place the
letters within brackets following the relocatable file specifications in the LK80 com-

mand line. Letters can be lower- or upper-case. The following examples show several
ways to specify LK80 toggles:

LKBO TESTLQ1]

LKBO TESTPGM=TEST,ONE TWO:THREELQL]
LK80 TEST [M:0B.:L1]

LKBO TEST [MOBL1

LKBO=TEST“[CMI1- [OBT “CL]

18 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 3.2 LKB80 Toggles

LK80 supports five toggles as listed in the following table.

Table 3-1. LKB80 Toggles

Toggle Instruction

L Redirect console output from LK80 to the printer.

M List all module names followed by an absolute starting address for
each.

0o Write output files to a drive other than the default drive.

Q Place all symbols beginning with a question mark into the .SYM
file.

S Save linking information for the overlays in a file for future short-
links.

The L toggle directs all console messages output during linking to the printer.

The M toggle lists all module names and corresponding absolute addresses on the
console. LK80 lists library modules first, followed by overlay modules. The M toggle
displays a load map that you can use with the addresses provided in the CB80 listing
to aid in debugging.

The O toggle directs all output files to a disk drive other than the default drive.
Place the new drive specification immediately after the O. For example, the toggle
OC writes all output files to drive C.

The Q toggle tells LK80 to place all symbols beginning with a question mark into

the .SYM file. The toggle adds about 100 symbols to the .SYM file. If you do not
specify the Q toggle, LK80 places only program defined symbols into the .SYM file.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 19

3.2 LKB8O0 Toggles CBASIC Compiler (CB80) Programmer’s Guide

The S toggle provides a way to short-link an overlay file independent of all other
overlays in a program. Short-linking enables you to modify an overlay file and relink
it into the original program without relinking the entire program. The S toggle saves
linking information for the overlays in a disk file. LK80 saves the information in a
file with the same name as the root program, but with a .LNK filetype. The following
command line links the relocatable files TEST.REL, ONE.REL, and TWO.REL into
an executable program TEST.COM and an overlay MSGS.OVL. The S toggle saves
information for the overlay.

LKBO TEST.ONETWO:(MSGS)LS]

If you find an error in MSGS.OVL during execution of the program, you can
correct the error in MSGS.BAS. Then recompile MSGS.BAS to generate MSGS.REL.
Finally, you can short-link the new MSGS.REL into the TEST.COM program using_
the information saved in TEST.LNK. You do not have to repeat the whole link
specified in the original command line. The following short-link command line relinks
the new MSGS.REL overlay into TEST.COM. Note that you must not enclose MSGS
in parentheses in a short-link command line.

LKBO TEST.LNK, MSGS
The following rules apply to short-linking with the S toggle:

® The new overlay must not require code, common, or data segment sizes
larger than the segment sizes allocated in the original link.

® The new overlay must not reference library modules that are not included in
the root. LK80 informs you if this occurs.

® You must place the saved .LNK file first in the LK80 short-link command
line. LK80 assumes that all filenames after the .LNK filename constitute one
overlay.

B LK80 can short-link only one overlay at a time.

LK80 does not generate a symbol file during a short-link.

20 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 3.3 Producing Overlays

3.3 Producing Overlays

LK80 can produce overlay files that a CBASIC CHAIN statement can load into
memory and execute. Overlay files have a .OVL filetype. LK80 overlay files preserve
all variables declared in COMMON including variables stored dynamically, such as
arrays and strings.

To generate an overlay, enclose the filename of the relocatable object file in paren-
theses within the LK80 command line. The following command line creates an exe-
cutable file named TEST.COM and one overlay named ONE.OVL.

LKBO TEST(ONE)

The TEST.COM file is the root program. A CHAIN statement in the TEST.COM
program loads the overlay ONE.OVL. When the root program chains to an overlay,
the overlay actually replaces and overwrites the root in memory. This also occurs
when an overlay chains to another overlay or back to the root.

The root program contains all library routines for the entire program. This reduces
the size of an overlay file and the time required to load an overlay into memory.

LK80 can create up to 60 overlays at one time. However, the total number of
relocatable modules in one link cannot exceed 60. The following command line
generates an executable program named TESTPGM.COM and two overlays named
ONE.OVL and TWO.OVL:

LKB0 TESTPGM=TEST(ONE) (TWO)

You can combine several relocatable modules into one overlay. The following
command line generates an executable program named TEST.COM and three over-
lays named A.OVL, C.OVL, and F.OVL:

LKBO TEST(A:B) (C:D+E) (F)

You can specify names for the overlay files in the command line. The following
command line generates the TESTPGM.COM program and two overlays named
FIRST.OVL and SECOND.OVL:

LKBO TESTPGM=TEST (FIRST=A) (SECOND=B:C)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 21

End of Section 3 CBASIC Compiler (CB80) Programmer’s Guide

3.4 Linking Assembly Language Routines

LK80 can link assembly language routines with relocatable modules that CB80
creates. You can use the Digital Research Relocating Macro Assembler, RMAC™, to
convert your assembly language programs into relocatable modules that LK80 can
link.

Assembly language routines linked into a CBASIC program must not contain ini-
tialized data. You can place all data that requires an initial value in the code segment.
Refer to section 5.3 for information on parameter passing and returning values.

Note that using assembly language routines makes a program machine-dependent.

End of Section 3

22 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 4
The Library

A library file consists of one or more relocatable modules. However, to be useful
in the linking process, a library file must contain an index. The CBASIC Compiler
provides an indexed library file for use with LK80 and a library manager utility
program to create your own library files. Your CBASIC Compiler product disk should
contain the following two files:

CBB80O.IRL
LIB.COM

4.1 CBS80.IRL

The file CB80.IRL is an indexed library file that contains modules to allocate and
release memory, determine available memory space, and perform arithmetic opera-
tions and input/output processing. All indexed library files have a .IRL filerype. An
index precedes the group of modules and contains all the public symbols that are in
each module. The index enables LK80 to determine which routines in CB80.IRL are
required to create the executable program.

LK8O0 first reads the .REL files you specify in the command line. LK80 then searches
the index of CB80.IRL for any symbols that remain unresolved. LK80 links only
those modules from CB80.IRL that contain definitions of the unresolved symbols.

For example, if a module in one of your programs requires the square root subrou-
tine, LK80 searches the index of the CB80.IRL file for the symbol RSQR. Assuming
that this symbol is not defined anywhere in your program, LK80 links the module
from CB80.IRL that contains the definition of ?RSQR. LK80 links any module from
the indexed library that contains a required symbol definition.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 23

wn
)
o)
=
=
b

4.1 CBB80.IRL CBASIC Compiler (CB80) Programmer’s Guide

4.1.1 Dynamic Storage Allocation Routines

The CBASIC Compiler indexed library file provides four routines for use in assem-

bly modules that enable you to allocate and release memory, and to determine the
amount of space that is available for allocation.

® The >GETS routine allocates space. The routine requires that the number of

bytes of memory to allocate pass in registers H and L. The maximum num-
ber of bytes the routine can allocate is 32,762. ?GETS returns a pointer to a
contiguous block of memory in registers H and L. There is no restriction on
what the allocated memory space can contain, if the adjacent space at either
end of the allocated area is not modified.

®m The ?RELS routine releases previously allocated memory. The routine requires

that the address of the space to release passes in registers H and L. ?RELS
does not return a value.

The ?MFE routine returns the size of the largest contiguous area available
for allocation using the ?GETS routine. The value returned is an integer
placed in in registers H and L.

The ?IFRE routine returns the total amount of unallocated dynamic memory.
The returned value is an integer placed in registers H and L. A negative value
indicates a number larger than 32,767.

4.1.2 Arthmetic Routines

The CBASIC Compiler indexed library file provides routines for signed integer

multiplication and division for use in assembly modules.

24

® The ?MIDH routine multiplies the signed integer in registers D and E by the

signed integer in registers H and L. The routine returns the result in registers
H and L.

The ?DIDH routine divides the signed integer in registers D and E by the
signed integer in registers H and L. The routine returns the result in registers
H and L.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 4.2 The Library Manager Utility, LIB

4.2 The Library Manager Utility, LIB

The LIB.COM file is a versatile librarian program used to develop library files for
use with LK80. LIB.COM can perform the following four tasks:

concatenate a group of .REL files into a library

create an indexed library, .IRL file

select modules from a library

print module names and public symbols from a library

The LIB.COM program supports three command line switches. A switch is a single
lower- or upper-case letter that you specify in brackets following the first filename in
the LIB command line.

8 The I switch creates an indexed library, .IRL file.

® The M switch prints a listing of module names from a specified file.

® The P switch prints a listing of both module names and public symbols from
a specified file.

4.2.1 LIB Manager Command Lines

You can concatenate a group of .REL files to unite modules that must execute in
combination. Two separate modules might contain public functions that a third mod-
ule needs for execution. Combining the three modules into one .REL file simplifies
the LK80 command line that refers to them. The following librarian command line
creates a file named TEST.REL by concatenating the files TEST1.REL, TEST2.REL,
and TEST3.REL:

LIB TEST=TEST1,TEST2,TEST3

The librarian program only concatenates the three original files. The librarian does
not modify the files in any other way.

Using the I switch, you can create an indexed library file for a group of modules
that support the same types of applications, but are not interdependent for execution.
Certain programs might require only one or two modules from a group. Generate an
indexed library with the group of modules using LIB.COM. The following command
line generates an indexed library named TEST.IRL from the three modules TEST1,
TEST2, and TEST3:

LIB TESTLIJI=TEST1,TEST2.,TEST3

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 25

4.2 The Library Manager Utility, LIB CBASIC Compiler (CB80) Programmer’s Guide

Specify the library name in the LK80 command line whenever the application pro-
gram requires certain modules. LK80 searches the index of the library for the required
routines and links the corresponding modules into the program. This procedure helps
keep the executable program file as small as possible. You can specify up to ten
indexed library files in an LK80 command line. LK80 processes library files in order
of occurrence.

When you start the LIB.COM program, a sign-on message and some diagnostic
messages display on the console. Using the M toggle, you can have LIB.COM gener-

ate a list of all module names in the specified files following the diagnostic messages.
The following command line generates a list of all modules for the TEST.REL file:

LIB TESTEM]

Using the P toggle, you can have LIB.COM generate a list of all module names
and public symbols in the specified files following the diagnostic messages. The fol-
lowing command line generates a list of all modules and public symbols for the
TEST.REL file:

LiB TESTIPI

End of Section 4

26 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 5
Machine-level Environment

To understand the CBASIC Compiler machine-level environment, you should have
a working knowledge of CP/M and a familiarity with elementary computer architecture.

5.1 Memory Allocation

The operating system loads an executable CBASIC program into the CP/M Tran-
sient Program Area (TPA). Before a CBASIC program loads, the CP/M Console
Command Processor (CCP) resides at the top of the TPA. The CBASIC program
overwrites all of the CCP after it begins execution.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 27

wn
4"
0
e
o
=2
(9]

5.1 Memory Allocation CBASIC Compiler (CB80) Programmer’s Guide

The following diagram shows memory allocation during execution of a compiled
CBASIC program. The area extending from the base of memory at OH to the base of
the TPA at 100H is reserved for CP/M and remains fixed. The area extending from
the top of the TPA to the top of memory at FFFFH is reserved for CP/M and remains
fixed. When CP/M loads a CBASIC program, the memory available in the TPA is
partitioned into six areas of varying size. The diagram shows the relative positions of
the different areas in memory, but does not accurately represent relative sizes.

FFFFH

CP/M BIOS

CP/M BDOS

.......

Free Storage Area (FSA)

Computational Stack Area (CSA)

Data Area é"'TPA

Common Area

Program Code

Code Area
100H Library ‘Code

0H Reserved for CP/M

Figure 5-1. CP/M Memory Allocation

28 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 5.1 Memory Allocation

® The Code Area contains the actual computer instructions used during execu-
tion. The Code Area consists of two partitions: the Program Code and the
Library Code. The Program Code section contains the root program. When
you chain to an overlay, the overlay file overwrites the root program in this
area. Likewise, when you chain back to the root programs, the root program
overwrites the overlay file. The Library Code section contains the various
routines from CB80.IRL and other indexed library modules that the program
requires for execution.

® The Common Area contains all variables passed through COMMON state-
ments to chained programs. The Common Area reserves eight bytes of stor-
age space for each variable, regardless of data type. For array and string
variables, the actual value is stored in the Free Storage Area. The value
stored in the Common Area is an address in the FSA.

® The Data Area contains all variables that are not declared in COMMON.
The Data Area is not preserved during chaining. The Data Area reserves two
bytes for each integer and eight bytes for each real number. The Data Area
stores the pointers that refer to strings and arrays in the FSA.

® The Computational Stack Area (CSA) is fixed at 100 bytes of memory. The
CSA evaluates expressions and passes parameters to CBASIC predefined
functions.

®m The Free Storage Area (FSA) stores arrays, strings, and file buffers. Variably
sized blocks of memory are allocated from the FSA as required and returned
when no longer needed.

The starting and ending addresses for each partition in the TPA varies for different

programs. Once allocated, however, the amount of memory each partition occupies
remains fixed during program execution.

ALL INFORMATION PRESENTED HERE [S PROPRIETARY TO DIGITAL RESEARCH 29

5.2 Internal Data Representation CBASIC Compiler (CB80) Programmer’s Guide

5.2 Internal Data Representation

CBASIC machine-level representation varies somewhat for real numbers, integers,
strings, and arrays.

® REAL NUMBERS are stored in binary coded decimal (BCD) floating-point
form. Each real number occupies eight bytes of memory storage space, as
shown in Figure 5-2. The high-order bit in the first byte (byte 0) contains the
sign of the number. The remaining seven bits in byte 0 contain a decimal
exponent. Bytes 1 through 7 contain the mantissa. Two BCD digits occupy
each of the seven bytes in the mantissa. The number’s most significant digit
is stored in byte 7, furthest from the exponent. The floating decimal point is
always situated to the left of the most significant digit.

14 BCD DIG}T MANTISSA

[I I

XX XX XX XX XX XX XX XX
BYTES 0 1 2 3 4 5 6 7
cxp()lncnt
)]c % XX X)](
s s e

X X
1
l—»exponcnt’s

sign bit

number’s
sign bit

Figure 5-2. Real Number Storage

30 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 5.2 Internal Data Representation

® INTEGERS are stored in two bytes of memory space with the low order byte
first as shown in Figure 5-3. Integers are represented as 16-bit two’s comple-
ment binary numbers. Integer values range from —32768 to +32767,

inclusive.
LOW ORDER BYTE HIGH ORDER
STORED FIRST BYTE
|
} .
| =
X X X X X X X X X X X X X X X
T e e el e R o (R SN TN RS T S T e e & i 1 e e

SIGN
BIT

Figure 5-3. Integer Storage

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 31

5.2 Internal Data Representation CBASIC Compiler (CB80) Programmer’s Guide

® STRINGS are stored as a sequential list of ASCII representations. The length
of a string is stored in the first two bytes followed by the actual ASCII
values. The maximum number of characters in a string is 32,762. CBASIC
Compiler allocates space in the Free Storage Area for strings. A pointer in
the Data Area is an address in the FSA for the actual string,

Data in string.
0 or more bytes

XX XX XX N XX
BYTES O 1 2 3 n
length
string length
|
high order low order
bit bit
(stored first)
== —5nhs X X X X X X
15 14 130 ki 8 Zaes’ ssnnesiorianees 0

reserved for use
by run-time library

Figure 5-4. String Storage

Note: string lengths are stored high order and then low order. This is con-
trary to the normal 8080 convention for storing 16-bit quantities. The reserved
bit, 15, is used to indicate that the string is temporary if the bit is a 1, and
not temporary if it is a 0.

32 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 5.2 Internal Data Representation

m ARRAYS, both numeric and string, are allocated space in the Free Storage
Area as required. Eight bytes are reserved for each element of an array
containing real numbers and two bytes for each element of an integer array.

At some point in a program, it might be necessary to free memory space allocated
to arrays that are no longer needed in the program. Freeing numeric array space
requires that you simply redimension the array to zero. However, freeing string array
space is a two step process. First, you must set all string array elements to null. Set
all string array elements equal to a string variable that has never been assigned a
value. Use a variable such as NULLS$. Be sure that NULLS$ has never been assigned a
value. Do not set NULL$ equal to “/”. Second, you must redimension the string
array to zero after assigning each element in the array to NULLS.

5.3 Parameter Passing and Returning Values

CBASIC Compiler passes all parameters on the hardware stack. When a program
calls a routine, CBASIC places each parameter on the stack reading from left to right.
The last entry on the stack is the return address. All values must conform to the
format described in Section 5.2.

An assembly language routine can return integer, real, or string values to a CBASIC
program. Before returning to the CBASIC program, all parameters passed on the
stack must be removed and the stack pointer adjusted accordingly.

Integers return in registers H and L. Real numbers return using a pointer in regis-
ters H and L that points to an eight byte area containing the real value. The H and
L registers contain the address of the exponent byte of the number being returned.

Strings return using a pointer in registers H and L. Strings must have been allo-
cated using CBASIC Compiler dynamic storage management routines. The allocation
bit of a returning string should be set to 1. This ensures that the space is initialized
when no longer needed.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 33

5.4

.REL File Format CBASIC Compiler (CB80) Programmer’s Guide

5.4 .REL File Format

CB80 and the Digital Research Relocating Macro Assembler (RMAC) create .REL
files. A .REL file contains information encoded in a bit stream. You can interpret the
information as described in the following list:

If the first bit is a 0, the next 8 bits load according to the value of the
location counter.

If the first bit is a 1, the next two bits can be interpreted as follows:

00 Special link item.

01 Program relative. The next 16 bits load following an offset from the
program segment origin.

10 Data relative. The next 16 bits load following an offset from the data
segment origin.

11 Common relative. The next 16 bits load following an offset from the
origin of the currently selected common block.

A special item consists of the following:

34

4-bit control field that selects one of 16 special link items described in Table
5-1.

An optional value field that consists of a 2-bit address type field and a 16-bit
address field. The address type field can be interpreted as follows:

00 - absolute

01 - program relative
10 - data relative

11 - common relative

an optional name field consisting of a 3-bit name count followed by the
name in 8-bit ASCII characters.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 5.4 _.REL File Format

Table 5-1. Special Link Items
Control Field Meaning

A name field follows the next five Link Items:

0000 Entry symbol. This module describes the symbol indicated in
the name field.

0001 Currently unassigned.

0010 Program name. This is the name of the relocatable module.

0011 Name field. Gives the name of default library file to use.

LK80 assumes a filetype of .IRL.
0100 Currently unassigned.

A value field and a name field follow the next four link items:

0101 Define common size. The value field determines the amount
of memory to reserve for the common block indicated in the
name field.

0110 Chain external. The value field contains the head of a chain

that ends with an absolute 0. The value of the external sym-
bol described in the name field replaces each element of the

chain.

0111 Define entry point. The value field defines the value of the
symbol in the name field. This link item puts local symbols
in .REL files.

1000 Currently unassigned.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 35

5.4 .REL File Format CBASIC Compiler (CB80) Programmer’s Guide

Table 5-1. {continued)

Control Field

Meaning

1001

1010

1011

1100

1101

1110

1111

A value field follows the next six link items:

The last item has no value field or name field:

External plus offset. The value in the value field after all
chains are processed must offset the following two bytes in
the current segment.

Define data size. The value field contains the number of bytes
in the data segment of the current module.

Set location counter. Set the location counter to the value
indicated in the value field.

Chain address. The value field contains the head of a chain
that ends with an absolute 0. The current value of the loca-
tion counter replaces each element of the chain.

Define program size. The value field contains the number of
bytes in the code segment of the current module.

End module. Defines the end of the current module. If the
value field contains a value other than absolute 0, the value
is the start address for the linking program. The next item
in the file will start at the next byte boundary.

End file. Follows the last module item for the last module in
the file.

36 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide 5.5 .IRL File Format

5.5 .IRL File Format

The CBASIC Compiler librarian utility, LIB.COM, creates .IRL files. An .IRL file
consists of three parts: the header, the index, and the relocatable section. The header
contains 128 bytes allocated as follows:

® byte 0 - extent number of first record of relocatable section
® byte 1 - record number of first record of relocatable section
® bytes 2 to 127 - currently unassigned

The index consists of entries that correspond to the entry symbol items listed in
the relocatable section. Entries use the following form:

e r b cl c2 cn d

e = Extent offset from start of relocatable section to start of module.

r = Record offset from start of extent to start of module.

o
]

Byte offset from start of record to start of module.
cl - cn = Name of symbol.
d = End of symbol delimiter (OFEH).

When c1 equals OFFH, the index terminates and the remainder of the record is not
used.

The relocatable section contains relocatable object code as described in the Section

54.

End of Section §

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 37

End of Section § CBASIC Compiler (CB80) Programmer’s Guide

38 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix A
Implementation
Dependent Values

The following implementation dependent values apply to CB80 version 1 for use
with CP/M, versions 2 and 3, and MP/M-80™, versions 1 and 2:

Table A-1. Implementation Dependent Values

Parameter Value Minimum
Initial page width for compiler output 80 —
Initial page length for compiler output 66 — >
Maximum number of errors maintained 95 — E
Maximum nesting of include 6 4 %
Maximum number of formal parameters 15 15 -
Maximum number of subscripts in an array 15 15
Maximum unique identifier length 50 31
Maximum number of characters in string constant 255 255
Maximum length of Global and External names 6 6
Maximum nesting of FOR loops 13 —
Maximum nesting of WHILE loops 39 ——
Number of files that can be open at one time 20 12
File buffer size in bytes 128 -

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 39

A Implementation Dependent Values CBASIC Compiler (CB80) Programmer’s Guide

The minimum values are the minimum that are used in any CB80 implementation.

The following extensions exist in CB80, versions 1.3 and 1.4, to provide compati-
bility with CBASIC version 2. Note that future versions of CB80 might not support
these extensions.

40

The LPRINTER statement accepts a WIDTH option to be consistent with
CBASIC. The width is ignored.

Integer and real data is initialized to 0; strings are initialized to null strings.
See Section 5.2.

The INPUT prompt string can be any expression; the first operand must be
a string constant.

An OPEN or CREATE statement accepts a RECS field for compatibility with
CBASIC. The expression is ignored.

You can use the reserved words LT, GT, LE, GE, EQ, and NE in place of
the relational operators <, >, <=, >=, =, and < >.

CB80 supports the following form of an IF statement:
IF expression THEN label

but the label must be a numeric label.

End of Appendix A

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix B
Compiler Error Messages

The compiler prints the following messages when a file system error or memory
space error occurs. In each case, control returns to the operating system.

Table B-1. File System and Memory Space Errors

Error Meaning

COULD NOT OPEN FILE :filename

The filename following the message cannot be located in the file
system directory.

%LINCLUDES NESTED TOO DEEP :filename

The filename following the message occurred in an %INCLUDE
directive that exceeds the allowed nesting of %INCLUDE directives.

SYMBOL TABLE OVERFLOW

The available memory for symbol table space has been exceeded.
Break the program into modules or use shorter symbol names.

g xipuaddy

INVALID FILE NAME : filename

The filename is not valid for your operating system.

DISK READ ERROR

The operating system reports a disk read error.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 41

B Compiler Error Messages CBASIC Compiler (CB80) Programmer’s Guide

Table B-1. (continued)

Error Meaning

CREATE ERROR: filename

The file cannot be created. Normally this means there is no directory
space on the disk.

DISK FULL

The operating system reports that no additional space is available to
write temporary or output files. The directory may be full or the
disk is out of space.

INVALID COMMAND LINE

The command line is incorrect. The compiler prints a greater-than
sign, >, one blank space, and all command line characters beginning
with the first character in error. If no characters remain in the com-
mand line when an error occurs, the compiler does not print the >
or the space.

MISSING SOURCE FILE NAME

The command line processor reports that you did not specify a source
file.

CLOSE OR DELETE ERROR

The operating system reports that it cannot close a file. This occurs
if diskettes are switched during compilation.

If the compiler detects an internal failure, the following error message appears:

FATAL COMPILER ERROR XXX
NEAR SOURCE LINE XXXX

where XXX is a three digit number. Please advise Digital Research of the error and
the circumstances under which it occurs.

42 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide B Compiler Error Messages

The following error messages indicate a compilation error occurred during compi-
lation of a program. Compilation continues after the error is recorded. Compilation
error messages display within the source code listing.

Table B-2. Compilation Error Messages

Error Meaning
1 Invalid character in the source program. The character is ignored.
2 Invalid string constant. The string is too long or contains a carriage
return.
< Invalid numeric constant. An integer constant of zero is assumed.
4 Undefined compiler directive. This source line is ignored.
5 The %INCLUDE directive is missing a filename. This source line is
ignored.
6 Statements found after an END.
7 Not used.
8 Variable used without being defined, and the U toggle used during
compilation.
9 The DEF statement is not terminated by a carriage return. A carriage
return is inserted.
10 A right parenthesis is missing from the parameter list. A right par-
enthesis is inserted.
11 A comma is missing in the parameter list. A comma is inserted.
12 An identifier is missing in the parameter list.
13 The same name is used twice in a parameter list.
14 A DEF statement occurs within a multiple-line function. Multiple-]
line functions cannot be nested. The statement is ignored.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 43

B Compiler Error Messages CBASIC Compiler (CB80) Programmer’s Guide

Table B-2. (continued)

Error Meaning

15 A variable is missing.

16 The function name is missing following the keyword DEF. The DEF
statement is ignored.

17 A function name is used previously. The DEF statement is ignored.

18 A FEND statement is missing. A FEND is inserted.

19 There are too many parameters in a multiple line function.

20 Inconsistent identifier usage. An identifier cannot be used as both a
label and a variable.

21 Additional data exists in the source file following an END statement.
This is the logical end of the program.

22 Data statements must begin on a new line. The remainder of this
statement is treated as a remark.

23 There are no variables or function names in a declaration statement;
or, a reserved word appears in the list of identifiers.

24 A function name appears in a declaration within a multiple-line
function other than the multiple-line function that defines this func-
tion name.

25 A function call has incorrect number of parameters.

26 A left parenthesis is missing. A left parenthesis is inserted.

27 Invalid mixed mode. The type of the expression is not permitted.

28 Unary operator cannot be used with this operand.

29 Function call has improper type of parameter.

44 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC _Compilcr (CB80) Programmer’s Guide B Compiler Error Messages

Table B-2. (continued)

Error Meaning
30 Invalid symbol follows a variable, constant, or function reference.
31 This symbol cannot occur at this location in an expression. The

symbol is ignored.

32 Operator is missing. Multiplication operator inserted.

33 Invalid symbol encountered in an expression. The symbol is ignored.
34 A right parenthesis is missing. A right parenthesis is inserted.

35 A subscripted variable is used with the incorrect number of subscripts.
36 An identifier is used as a simple variable with previous usage as a

subscripted variable.

37 An identifier is used as a subscripted variable with previous usage as
an unsubscripted variable.

38 A string expression is used as a subscript in an array reference.

39 A constant is missing.

40 Invalid symbol found in declaration list. The symbol is skipped.

41 A carriage return is missing in a declaration statement. A carriage

return is inserted.
42 Comma is missing in declaration list. A comma is inserted.

43 A common declaration cannot occur in a multiple-line function. The
statement is ignored.

44 An identifier appears in a declaration twice in the main program or
within the same multiple-line function.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 45

B Compiler Error Messages CBASIC Compiler (CB80) Programmer’s Guide

Table B-2. (continued)

Error

Meaning

45

46

47

48

49

50

51

52

53

54

55

56

57

The number of dimensions specified for an array exceeds the maxi-
mum number allowed. A value of one is used. This might generate
additional errors in the program.

Right parenthesis is missing in the dimension specification within a
declaration. A right parenthesis is inserted.

The same identifier is placed in COMMON twice.

An invalid subscripted variable reference encountered in a declara-
tion statement. An integer constant is required. A value of 1 is used.

An invalid symbol found following a declaration, or the symbol in
the first statement in the program is invalid. The symbol is ignored.

An invalid symbol encountered at the beginning of a statement or
following a label.

An equal sign is missing in assignment. An equal sign is inserted.

A name used as a label previously used at this level as either a label
or variable.

Unexpected symbol follows a simple statement. The symbol is ignored.

A statement is not terminated with a carriage return. Text is ignored
until the next carriage return.

A function name is used in the left part of an assignment statement
outside of a multiple-line function. Only when the function is being
compiled can its name appear on the left of an assignment statement.

A predefined function name is used as the left part of an assignment
statement.

In an IF statement, a THEN is missing. A THEN is inserted.

46

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide B Compiler Error Messages

Table B-2. (continued)

Error Meaning

58 A WEND statement is missing. A WEND is inserted.

59 A carriage return or colon is missing at the end of a WHILE loop
header.

60 In a2 FOR loop header the index is missing. The compiler skips to
end of this statement.

61 In a FOR loop header, a TO is missing. A TO is inserted.

62 An equal sign is missing in a FOR loop header assignment. An equal
sign is inserted.

63 Carriage return or colon is missing at end of FOR loop header.

64 A NEXT statement is missing. A NEXT is inserted.

65 Not used.

66 The variable that follows NEXT does not match the FOR loop index.

67 NEXT statement encountered without a corresponding FOR loop
header.

68 WEND statement encountered without a corresponding WHILE loop
header.

69 FEND statement encountered without a corresponding DEF state-
ment. This error indicates that the end of the source program was
detected while within a multiple-line function.

70 The PRINT USING string is not of type string.

71 A delimiter is missing in a PRINT statement. A comma is inserted.

72 A semicolon is missing in an INPUT prompt. A semicolon is inserted.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 47

B Compiler Error Messages CBASIC Compiler (CB80) Programmer’s Guide

Table B-2. (continued)

Error Meaning

73 A delimiter is missing in an INPUT statement. A comma is inserted.

74 A semicolon is missing following a file reference. A semicolon is
inserted.

75 The prompt in an INPUT statement is not of type string.

76 In an INPUT LINE statement, the variable following the keyword
LINE is not a string variable.

77 In an INPUT statement, a comma is missing between variables. A
comma is inserted.

78 The keyword AS is missing in an OPEN or CREATE statement. AS
is inserted.

79 The filename in an OPEN or CREATE statement is not a string
expression.

80 A delimiter is missing in a READ statement. A comma is inserted.

81 In a GOTO, GOSUB, or ON statement, a label is missing. This
token can be an identifier previously used as a variable.

82 The label in a GOTO statement is not defined. If the label is used in
a function, it must be defined in that function.

83 A delimiter is missing in a file READ statement. A comma is inserted.

84 In a READ LINE statement, the variable following the keyword
LINE is not a string variable.

85 The label in an IF END statement is not defined.

86 A pound sign, #, is missing in an IF END statement. A pound sign
is inserted.

48

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide B Compiler Error Messages

Table B-2. (continued)

Error Meaning

87 A THEN is missing in an [F END statement. A THEN is inserted.

88 In a PRINT statement, the semicolon is missing following a using
string. A semicolon is inserted.

89 In an ON statement, a GOTO or GOSUB is missing. A GOTO is
assumed.

90 The index of a FOR loop header is of type string. The index must
be an integer or real value.

91 The expression following the keyword TO in a FOR loop header is
of type string. The expression must be an integer or real value.

92 The expression following the keyword STEP in a FOR loop header
is of type string. The expression must be an integer or real value.

93 A variable in a DIM statement is defined previously as other than a
subscripted variable.

94 An identifier is missing as an array name in a DIM statement. The
entire statement is ignored.

95 A left parenthesis is missing in a DIM statement. A left parenthesis
is inserted.

96 A right parenthesis is missing in a DIM statement. A right paren-
thesis is inserted.

97 The maximum number of dimensions allowed with a subscripted
variable is exceeded.

98 A comma is missing in a POKE statement. A comma is inserted.

99 The index of a FOR loop header is not a simple variable.

100 In a CALL statement, a multiple-line function name is missing.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 49

B Compiler Error Messages CBASIC Compiler (CB80) Programmer’s Guide

Table B-2. (continued)

Error Meaning

101 A file PRINT statement is terminated with a comma or semicolon.

102 A DIM statement is missing for this subscripted variable.

103 A comma is missing in the label list associated with an ON GOTO
or ON GOSUB statement. A comma is inserted.

104 A GOTO is missing in an ON ERROR statement. A GOTO is
inserted.

105 A comma is missing in a PUT statement. A comma is inserted.

106 The expression in an IF statement is of type string. An integer or
real expression is required.

107 The expression in a WHILE loop header is of type string. An integer
or real expression is required.

108 In an OPEN or CREATE statement, the filename is missing.

109 In an OPEN or CREATE statement, the expression following the
reserved word AS is missing.

50

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide B Compiler Error Messages

Table B-2. (continued)

Error Meaning
110 A multiple-line function calls itself.
134 § A semicolon separates expressions in a file PRINT statement. A comma

is substituted for the semicolon.

112 A file PRINT statement does not have an expression list.
113 A TAB function is used in a file PRINT statement expression list.
114 Label used as a variable in a list of expressions.
115 A GO not followed by a TO or SUB. GOTO is assumed.
116 An OPEN or CREATE statement specifies both UNLOCKED and
LOCKED access control.
117 A CREATE statement uses the READ ONLY access control.
End of Appendix B

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 51

End of Appendix B CBASIC Compiler (CB80) Programmer’s Guide

52 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix C
LK80O Error Messages

LK80 prints the following messages to indicate the occurrence of an error during
linking. Control returns to the operating system after the message is displayed.

Table C-1. LKB80 Error Messages

Message Meaning

Unresolved external: symbol name

You defined the symbol name as external but neglected to define
the symbol as public.

Out of Directory Space

LK80 ran out of directory space while writing the root, overlay,
symbol, or environment file.

Disk Full

LK80 ran out of disk space while writing the root, overlay, sym-
bol, or environment file.

Multiple Definition: symbol name

You defined a symbol name more than once.

Too many overlays

You specified more than 60 overlays in the command line.

Too many modules

You specified more than 60 modules in the command line.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 53

3 xipuaddy

C LKB80 Error Messages CBASIC Compiler (CB80) Programmer’s Guide

Table C-1. (continued)

Message Meaning

Symbol table overflow

There is not enough memory for the symbol table.

Cannot open source file

A source file specified in the command line cannot be opened.

Too many library files

You cannot specify more than 10 indexed library files in the com-
mand line.

Too many library modules

You cannot extract more than 150 modules from all indexed
library files.

Index too big

A library file index cannot exceed 16K.

Too many external-plus-offsets

The table that saves external-plus-offsets has overflowed. Refer-
ences to offsets from external symbols usually occur in assembly
language programs.

Code size exceeded, Short 1linK aborted.

The new overlay cannot require a code segment larger than the
code segment in the original full link.

Data size exceeded., Short 1inK aborted.

The new overlay cannot require a data segment larger than the
data segment in the original full link.

54 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide C LKB8O0 Error Messages

Table C-1. (continued)

Message Meaning

Common size exceeded. Short 1link aborted.

The new overlay cannot require a common segment larger than
the common segment in the original full link.

Root has no entry Point.

You did not specify the root program in the command line or
your root program does not contain executable statements.

No entry point defined for overlavy: overlay

The overlay file specified in the message does not contain execut-
able statements.

Not enoudh memory

There is not enough memory for LK80 to complete linking the
modules specified in the command line.

Cannot close file: file

LK80 cannot complete linking because it cannot close the module
specified in the message.

Expected module name

You did not specify a module name in the command line.

Toddle not surpported

You specified an invalid toggle letter in the command line.

Expected] at end of togdle definition

You omitted a closing square bracket in a command line toggle
definition.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 55

C LKB80 Error Messages CBASIC Compiler (CB80) Programmer’s Guide

Table C-1. (continued)

Message Meaning

Unexrpected (?

You entered a left parenthesis without a matching right paren-
thesis in the command line, indicating an incomplete overlay
specification.

Unexpected) ?

You entered a right parenthesis without a matching left paren-
thesis in the command line, indicating an incomplete overlay
specification.

Invalid or unexpected character

You entered a character in the command line that LK80 does not
recognize or did not expect at a certain position in the command
line.

Module name or tyrPe too longd

Module names cannot exceed 8 characters and types cannot exceed
3 characters.

Can only specify outPut name on first module

Only one module name can precede the equal sign in a command
line. If you do not use the equal sign, the first module listed
becomes the name of the output file.

Multiple entry Points in: filespec

More than one file specified in the command line contains execut-
able statements. The file specified in the message contains execut-
able statements.

End of Appendix C

56 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix D
Execution Error Messages

The following warning message might be printed during execution of a CB80
program:

IMPROPER INPUT - REENTER

This message occurs when the fields you enter from the console do not match the
fields specified in the INPUT statement. Following this message, you must reenter all
values required by the input statement.

Execution errors cause a two-letter code to be printed. The following table con-
tains valid CB80 error codes.

If an error occurs with a code consisting of an asterisk followed by a letter, such

as *R, a CB80 library has failed. Please notify Digital Research of the circumstances
under which the error occurred.

Table D-1. CBB80 Error Codes

Code Error
AC The argument in an ASC function is a null string.
BN The value following the BUFF option in an OPEN or CREATE state-

ment is less than 1 or greater than 128.

CE The file being closed cannot be found in the directory. This occurs if -E';
the file has been changed by the RENAME function. -;?D

CM The file specified in a CHAIN statement cannot be found in the %
selected directory. If no filetype is present, the compiler assumes a)
type of OVL.

CI The filetype of the file specified in a CHAIN statement is other than
COM or OVL.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 57

D Execution Error Messages CBASIC Compiler (CB80) Programmer’s Guide

Table D-1. (continued)

Code Error

CU A CLOSE statement specifies a file identification number that is not
active.

DF An OPEN or CREATE statement uses a file identification number
that is already used.

DU A DELETE statement specifies a file identification number that is not
active.

DW The operating system reports that there is no disk or directory space

available for the file being written to, and no IF END statement is in
effect for the file identification number.

DZ Division by zero is attempted.

EF Attempt to read past the end-of-file, and no IF END statement is in
effect for the file identification number.

ER Attempt to write a record of length greater than the maximum rec-
ord size specified in the OPEN or CREATE statement for this file.

EX Indicates MP/M II extended error.

FR Attempt to rename a file to a filename that already exists.

FU Attempt to access a file that was not open.

IF A filename in an OPEN or CREATE statement or with the RENAME
function is invalid for your operating system.

IR A record number of zero is specified in a READ or PRINT statement.

LN The argument in the LOG function is zero or negative.

g

The operating system reports an error during an attempt to create or
extend a file. Normally, this means the disk directory is full.

58 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CBASIC Compiler (CB80) Programmer’s Guide D Execution Error Messages

Table D-1. (continued)

Code Error

MP The third parameter in a MATCH function is zero or negative.

NE A negative value is specified for the operand to the left of the power
operator.

NF A file identification is less than 1 or greater than the maximum num-
ber allowed. See Appendix E.

NN An attempt to print a numeric expression with a PRINT USING
statement fails because there is not a numeric field in the USING
string.

NS An attempt to print a string expression with a PRINT USING state-
ment fails because there is not a string field in the USING string.

OD A READ statement is executed but there are no DATA statements in
the program, or all data items in all the DATA statements have been
read.

OE Attempt to OPEN a file that does not exist, and for which no IF
END statement is in effect.

OF An overflow occurs during a real arithmetic calculation.

OM The program runs out of dynamically allocated memory during
execution.

RB Random access is attempted to a file activated with the BUFF option
specifying more than one buffer.

RE Attempt to read past the end of a record in a fixed file.

RU A random read or print is attempted to a stream file.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 59

D Execution Error Messages CBASIC Compiler (CB80) Programmer’s Guide

Table D-1. (continued)
Code Error

SL A concatenation operation results in a string greater than the maxi-
mum allowed string length.

SQ Attempt to calculate the square root of a negative number.

SS The second parameter of a MIDS$ function is zero or negative, or the
last parameter of a LEFT$, RIGHTS, or MIDS$ is negative.

TE A tab statement contains a parameter less than 1.

UN A PRINT USING statement is executed with a null edit string, or the
backslash escape character, \, is the last character in an edit string.

WR Attempt to write to a stream file after it is read, but before it is read

to the end-of-file.

End of Appendix D

60 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix E

LIB Error Messages

The following table presents the LIB.COM program error messages and descriptions.

Table E-1. LIB Error Messages

Message

Meaning

CANNOT CLOSE

DIRECTORY FULL

DISK READ ERROR

DISK WRITE ERROR

FILE NAME ERROR

ND FILE

NO MODULE

SYNTAX ERROR

LIB cannot close the output file. The diskette might
be write-protected.

There is no directory space for the output file.
LIB cannot read the specified file.

LIB cannot write the specified file; probably due to
a full diskette.

The form of a source filename is invalid.

LIB cannot find the file that is specified in the com-
mand line.

LIB cannot find the module that is specified in the
command line.

You used an incorrect command line to start the
LIB program.

End of Appendix E

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 61

3 xipuaddy

End of Appendix D CBASIC Compiler (CB80) Programmer’s Guide

62 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Index

A

arithmetic rourines, 24
array subscripts

maximum numbers of, 39
arrays, storage of, 33
assembly language routines, 21

B

BAS filetype, 2, 7
B toggle (CB80), 12

C

C toggle (CB80), 12
CB80 command line toggles, 10
CB80 command lines, 7
CB80.IRL, 23
CBASIC Compiler product disk, 1, §,
1528
CBASIC Program
execution of, 28
loading of, 27
CHAIN statement, 20
Code Area, 29
COM files, 1, §
command line toggles, 10
command lines
CB80, 7
LK80, 16
COMMUON, 20
Common Area, 29
compilation errors, 6, 7, 43
compiler directives, 8

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 63

compiler errors, 7, 41
compiler output
page length, 39
page width, 39
compiler passes, 6
compiling programs, 5
Computational Stack Area (CSA), 29
CP/M Transient Program Area
(TPA), 27
CREATE statement, 40
CSA, (see Computational Stack Area)

D

Data Area, 29

DEBUG directive, 10

default library file, 15, 35
directly executable program, 1, 4

E

EJECT directive, 9
ERRL function, 12
errors, 39
compiler errors, 7, 43
LK 80 errors, 18, 53
LIB errors, 61
executable program, 15, 16
executable statements, 16
external names
maximum length of, 39

F

F toggle (CB80), 12
fatal compiler errors, 8, 42
fatal errors
linker, 15, 43
file buffer size, 39
file system errors, 7
FOR loops
maximum nesting, 39
formal parameters
maximum number of, 39
Free Storage Area (FSA), 29
freeing memory space, 33

I

I toggle (CB80), 12
identifier

maximum length, 39
IF statement, 40

implementation dependent values, 39

improper input, 57
INCLUDE directive, 9, 11, 12
maximum nesting of, 39
indexed library file, 15, 23, 24, 25
integers, 31
initialization of, 40
IRL file, 23, 35
IRL file format, 37
IRL index entries, 37

L

L toggle (CB80), 12
L toggle (LK80), 19
LIB command line switches, 25

LIB error messages, 61
LIB.COM, 25, 26, 37, 61

librarian command lines, 25

librarian utility, 25, 37

library file, 1, 24

link editor, 1, 3, 15

linking, 15, 16

linking assembly language routines,
21

LIST directive, 9

LK80 command lines, 16

toggles in, 18

LK 80 command line disk file
documentation of, 17

LK80 errors, 18, 53

LKB80 failures, 18

LK80 toggles, 18-19

LNK file, 19, 20

LPRINTER statement, 40

M

M roggle (LK80), 19
machine level representation, 30
memory allocation messages, 6
memory space errors, 7, 41
memory
allocation of, 24, 27-28
Code Area, 29
Common Area, 29
Computational Stack Area, 29
Data Area, 29
Free Storage Area, 29
freeing array space, 33
release of, 24
space available, 24
module names, 19, 26
multiple-line functions, 16

& ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

N reserved words, 40
root program, 20

N toggle (CB80), 12

NOLIST directive, 9

S
O S toggle (CB80), 12

S roggle (LK80), 19
O toggle (CB80), 12 short-linking, 19, 20
O toggle (LK80), 19 source code compiler directives, 8
OPEN statement, 40 source code line numbers, 13
overlay files, 20 source files, 7

source program listing, 13
source program, 1, 2, 5, 7

P size of, §
storage allocation, 24
P toggle (CB80), 12 string constants
PAGE directive, 9 maximum number of characters in,
page width, 13 39
parameters, 33 strings, 32
printer, 19 symbol file, 11, 16, 17
public symbols, 26 symbol location file, 16
symbol table, 13
symbols
Q definition of, 23
placement of, 19
Q toggle (LK80), 19 unresolved, 23
SYM file, 12, 13, 19
R
T
R toggle (CB80), 12
real numbers, 30 T toggle (CB80), 13
relational operators, 40 temporary work files, 13
REL files, 1, 7, 34 Transient Program Area (TPA), 27

relocatable machine code modules, 1
relocatable object file, 5, 7, 12, 17,
20
relocatable object modules, 1
relocatable routines, 1
(see Library file)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 65

U

U toggle (CB80), 13
unresolved symbols, 23

¥

V toggle (CB80), 13

W

W toggle (CB80), 13
WHILE loops
maximum nesting, 39

X

X toggle (CB80), 13

66 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

