Technical Guide

i CPM 2.2
or

CPM+/3

A Technical guide to:
The Professional Adventure Writer

An adventure writing system for CP/M computers.

(c) 1986/88 Gilsoft International Ltd.
Program: T.J.Gilberts, G.Yeandle and P.Wade
Graphics: A.Williams
Manuels: T.J.Gilberts and G.Yeandle

All Rights reserved. No part of this publication may be copied,
loaned, hired or reproduced in any form whatsoever including
electronic retrieval systems without the prior written consent of
the authors and Gilsoft International Ltd.

The above notice does not apply to the 'run time' routines which
form & part of a completed adventure, which you are free to
distribute any way you wish, in that form. All we would request
is that you credit the use of the Professional Adventure Writer
somewhere within the game.

Acknowledgement

Thanks to Jill for putting up with
the many hours I spent hammering
away at the keyboard.

Contents

Overview
The Interpreter
The CondActs

Conditions
Actions

The Source file
The Compiler
Errors & Warnings
The Essays
The parser
Objects
Multi-part games
Light & Dark
EXTERN
PSIs
Summary
System messages

Flags
CondActs

Page

Page

Page
Page

Page
Page
Page
Page

Page
Page
Page
Page
Page
Page

Page
Page
Page

12
15

32
40

42

51
53
54
55
56
57

59
60
62

Contents

Overview

Overview
PAV can be divided into three main functional areas thus:
1/ The Source

The source (.SCE files) is = collection of tables, which
contain all the information to define an adventure game.

2/ The Compiler

The Compiler checks the source file for errors and converts it
into a PAW database (.PDB file) which the Interpreter can
understand.

3/ The Interpreter

This is the real heart of PAW. The next chapter deals with
the operation of the interpreter in detail, but it essentially
fetches commands from the Player and uses the information
contained in the database to decode and respond to those
commands.

The Interpreter
The Interpreter

The following description of the interpreter should be read in
conjunction with the flowcharts provided overleaf.

Initiaslise

The screen isn't cleared as this always occurs upon describing
location zero. The flags are all zeroed except for; flag 37, the
number of objects conveyable, which is set to 4; flag 52, the
maximum weight of objects conveyable, which is set to 10; flags
46 & 47, the current pronoun ("IT" usually), which are set to
255 (no pronoun) and flag 1 which is set to be the number of
objects carried but not worn. Note that clearing the flags has
the effect that the game always starts at location zero. This is
because flag 38, the current location of the player, is now zero.

Descride Current Location

If flag 2 is non zero it is decremented (reduced by 1). If it is
dark (Flag O is non zero) and flag 3 is non zero then flag 3 is
decremented. If it is dark, flag 4 is non zero and object O (the
source of light) is absent, then flag 4 is decremented.

The screen is cleared if the current screen mode (contents of
flag 40) is even.

If it is dark, and Object O is absent, then System message O
(referred to as SMO - "It's too dark to see anything") is
displayed. Otherwise the location description is displayed
without a NEWLINE.

Search Process Table 1

Flowchart 2 and the next section describe the scanning of a
process table. Process table 1 is used mainly to contain the
entries to add extra information to the current location
description. E.g. details of open doors, objects present etc.

¥e now enter the main loop of the interpreter which deals with
each time frame (i.e. each phrase extracted or each timeout on
input which occurs) and the response to players commands.

Search Process Table 2

This contains the main control for PAW's turn at the game. It is
used to implement the movements and actions of PSI's, the
uncontrolled events such as bridges collapsing, and so on.

Get Phrase

If flags 5 to 8 are non zero they are decremented. If it is dark

The Interpreter

(Flag 0 is non zero) and flag 9 is non zero then it is
decremented. If it is dark and flag 10 is non zero it is
decremented if object O is absent.

The parser is called to extract a phrase and convert it into a
logical sentence - LS. If the input buffer is empty, a new input
line is obtained from the player by printing a prompt and making
a call to the input routine. The prompt will be the systenm
message whose number is contained in flag 42 - a value of O will
select one of system messages 2,3,4 or 5 in the ratio 30:30:30:10
respectively.

If the timeout option is selected, by making flag 48 contain a
value greater than zero, then the input routine might time out.
In this case SM35 ("Time passes...") is displayed and a return
made to scan process 2 again.

A phrase 1is extracted and converted into the logical sentence;
by converting any words present, that are in the vocabulary, into
their word value and placing them in the required flags.

If no valid phrase can be found then SM§E ("I couldn't understand
any of that") is displayed, and a return made to scan process 2.

Search Response Table

Turns (flags 31 and 32), which is the number of valid phrases
extracted by the parser, is increased by one. Two flags are used
to allow 256 lots of 256 turns (i.e. §5536).

The Response table ie Process O is then scanned, for an entry
which matches the Verb and Nount! of the current LS, using the
process table routine detailed below.

If it is successful in carrying out an action (i.e. If PAVW
executes at least one action other than NOTDONE) then a return is
made to scan process table 2.

Search the Connections Table

A search is made of the connections table entry for the current
location, for a word which matches the current LS Verb. If one is
found then the players current location (flag 38) is set to be
the number associated with the word. Then a return is made to
describe the current location. Otherwise PAW prints SM8 ("I can't
80 in that direction®”) if the current LS Verdb has a word value
less than 14 or SM7 ("I can't do that") if it does not. In both
cases a return is made to scan process table 2.

The Interpreter

Flowchart 1

Initialise

e

Describe
Location
Process 1

Process 2
Get Phrase
No TURNS+1
Search
Response
M6 SM35
"I Don't "Time
nderstand] Passes..”
Yes No
Done?
Search
Connection
Table
No
Found?
No Yes
SM7
"Can't "Can't go
do that" that way"

Flowchart 2

End

Yes

Do Action

No

Exit?

Yes

No

The Interpreter

The Interpreter

Scan a Process Table

Reasponee is process table O, so it will also be scanned by this
section of PAW.

Essentially PAW will look at each entry in the table until it is
exhausted - the table of entries, not PAW! Assuming there is an
entry, it will ensure the Verb and Noun match those of the LS.
The use of the word "_", as either the Verb or the Noun, will
cause a match with any word in that part of the logical sentence.

Thus an entry in Response of "_ ", will cause a trigger of the
entry no matter what the LS.

PAW will then look at each CondAct in turn; if it is a condition,
which succeeds, then PAW will look at the next condact. Otherwise
it will drop out of the current condact list and look at the next
entry, if present, in the table - an exception to this is the
CondAct QUIT which, if it fails, will drop out of the table
completely - this is not shown in flowchart 2 for clarity. If it
is an action it will be carried out. Actions can be divided into
five main groups:

1/ Daac; which will completely exit the execution of all tables
(i.e. even if in a 10th level sub-process) and jump to
describe the current location. :

2/ END; (a group on its own) which will completely exit the
execution of all tables and jump to initialise a new game.

3/ Exit; any action which will stop processing of the current
table and exit to the calling table {(or back to the main loop
if in Response, Process 1 or 2).e.g. INVEN,DONE etc.

4/ Conditional Exit; any action which will stop processing of the
current table and exit to the calling table (or back to the
main loop if in Response, Process 1 or 2) if it fails to do
its required function. e.g. GET, PUTIN etc. Otherwise it will
continue with the next CondAct.

5/ Normal; any action which carries out its function, and allows
PAW to continue looking at the next CondAct in the current
entry. e.g. COPYFF, PLUS etec

It may be seen that QUIT acts like a type 4 action, but is still
a condition, so it's a CondAct! The summary of CondActs at the
end of this book shows which type each Action is.

The Interpreter

Using the Interpreter

A>PAWINT CAVE would run adventure CAVE.PDB from the default
drive

ADPAWINT d:CAVE would run adventure d:CAVE.PDB

A>PAWINT CAVE C would load adventure CAVE.PDB from the default
drive & give you the opportunity to Create a
standalone copy of the adventure (eg CAVE.COM)

Diagnostics

Diagnostics are not available in a standalone adventure or
following the use of action RAMSAVE. If diagnostics are
available they can be switched on and off whenever the input
routine is called. A null input (just press RETURN) will switeh
you into diagnostics and You will be able to look at and change
the flag values and object locations. When diagnostics are first
switched on you are in Flag mode and the value of flag 38 is
displayed. The commands available are:-

RETURN switch diagnostics off

0 switeh to Object mode

F switch to Flag mode .

n display the flag or object loc'n specified (n=0-255)
=n alter the item displayed to the specified value

NB Flag 38 is protected from being set higher than the number
of locations.
No object can be put at location 255.
Location 252 means not created.
Location 253 means worn.
Location 254 means carried.
You can only look at objects which have been defined.
Putting an object at a location which has not been defined
is the same as making it not created.

11

The CondActs
The CondActs

There now follows a detailed description of each CondAct. They
are divided into groups according to the subject they deal with
in PAW; such as flags, objects etc and give some hints as to a
possible use.

Several abbreviations are used in the descriptions as follows;

locno. is a valid location number.

locno+ is a valid location number or; 252 or " " (meaning not-

created), 253 or "WORN", 254 or "CARRIED" and 255 or "HERE"
(which is converted into the current location of the player).

mesno. is a valid message.

sysno. is a valid system message.
flagno. is any flag (0 to 255).
procno. is a valid sub-process number.

word is word of the required type, which is present in the

vocabulary, or " _" which ensures no-word - not an anymatch as
normal.

value is a value from O to 255.

Conditions

There are four conditions which deal with testing the location of
the player as follows;

AT locno.

Succeeds if the current location is the same as locno.

NOTAT locno.

Succeeds if the cur-ent location is different to locno.

ATGT locno.

Succeeds if the current location is greater than locno.

ATLT locno.

Succeeds if the current location is less than locno.

12

The CondActs

There are eight conditions which deal with the current location

of an object;

PRESENT objno.

Succeeds if Object objno. is carried, worn or at the current

location.

ABSEKT objno.

Succeeds if Object objno. is not carried, not worn and not at the

current location.

WORK objno.

Succeeds if object objno. is worn

HOTY¥ORN objno.

Succeeds if Object objno. is not worn.

CARRIED objno.

Succeeds if Object objno. is carried.

NOTCARR objno.

Succeeds if Object objno. is not carried.

ISAT objno. locno+

Succeeds if Object objno. is at Location loeno.
ISNOTAT objno. locno+

Succeeds if Object objno. is not at Location locno.
There are eight conditions which deal with the value
comparison of flags;

ZERO flagno.

Succeeds if Flag flagno. is set to zero.

NOTZERO flagno.

Succeeds if Flag flagno. is not set to zero.

EQ flagno. value

Succeeds if Flag flagno. is equal to value.

and

13

The CondActs

NOTBQ flagno. value

Succeeds if Flag flagno. is not equal to value.

GT flagno. value

Succeeds if Flag flagno. is greater than value.

LT flagno. value

Succeeds if Flag flagno. is set to less than value.

SANE flagno1 flagn02

Succeeds if Flag flagno1 has the same value as Flag flagnoz.
NOTSANE flagno1 flagn02

Succeeds if Flag flagno1 does not have the same value as Flag

flagnoz.

There are five conditions to check for an extended logical
sentence. It is best to use these conditions only if the specific
word (or absence of word using " ") is needed to differentiate a
situation. This allows greater flexibility in the commands
understood by the entry.

ADJECT1 word

Succeeds if the first noun's adjective in the current LS is word.
ADYERB word

Succeeds if the adverd in the current LS is word.

PREP word

Succeeds if the preposition in the current LS is word.

NOUNZ2 word

Succeeds if the second noun in the current LS is word.

ADJECT2 word

Succeeds if the second noun's adjective in the current LS is
word.

14

The CondActs

The following condition is for random occurrences. You could use
it to provide a chance of a tree falling on the player during a
lightning strike or a bridge collapsing etc. Do not abuse this
facility, always allow a player a way of preventing the problem;
such as rubber boots for the lightning, or similar.

CHANCE percent

Succeeds if percent is less than or equal to a random number in
the range 1-100 (inclusive). Thus a CHANCE 50 condition would
allow PAW to look at the next CondAct only if the random number
generated was between {1 and 50, a 50% chance of success.

A single condition to test for a timeout;

TIMNEOUT

Will succeed if the last request for input from the player was
allowed to timeout. For example an entry in Process table 2 of;

TIMEOUT
MESSAGE 0

(where message 0 read "Come on sleepy"”) could be created, perhaps
with a CHANCE or a count of time outs to make it less monotonous!
The true CondAct;

QUIT

SM12 ("Are you sure?") is printed and the input routine
called. Will succeed if the player replies with a word which

starts with the first letter of SM30 ("Y") to the prompt. If not
then Actions NEWTEXT & DONE are performed.

Actions
There are nineteen sctions to deal with the manipulation of
object positions;
GET objno.

If Object objno. is worn or carried, SM25 ("I already have the
-") is printed and actions NEWTEXT & DONE are performed.

If Object objno. is not at the current location, SM26 ("There

isn't one of those here.") isg printed and actions NEWTEXT & DONE
are performed.

15

The CondActs

If the total weight of the objects carried and worn by the player
plus Object objno. would exceed the maximum conveyable weight
(Plag 52) then SM473 ("The _ weighs too much for me.") is printed
and actions NEWTEXT & DONE are performed.

If the maximum number of objects is being carried (Flag 1 is
greater than, or the same as, Flag 37), SM27 ("I can't carry any
more things.”) is printed and actions NEWTEXT & DONE are
performed. In addition any current DOALL loop is cancelled.

Otherwise the position of Object objno. is changed to carried,
Flag 1 is incremented and SM36 ("I now have the _") is printed,

DROP objno.

If Object objno. is worn then SM24 ("I can't. I'm wearihg the
_JW is printed and actions NEWTEXT & DONE are performed.

If Object objno. is at the current location (but neither worn nor

carried), SM49 ("I don't have the _+") is printed and actions
NEWTEXT & DONE are performed.

If Object objno. is not at the current location then SM28 ("I

don't have one of those."”) is printed and actions NEWTEXT & DONE
are performed.

Otherwise the position of Object objno. is changed to the current

location, Flag 1 is decremented and SM39 ("I've dropped the ")
is printed. '

¥VEAR objno.

If Object objno. is at the current location {(but not carried or

worn) SM49 ("I don't have the _+") is printed and actions NEWTEXT
& DONE are performed.

If Object objno. is worn, SM29 ("I'm already wearing the ") is
printed and actions NEWTEXT & DONE are performed.

If Object objno. is not carried, SM28 ("I don't have one of
those.”) is printed and actions NEWTEXT & DONE are performed.

If Object objno. is not wearable (as specified in the object
definition section) then SM40 ("I can't wear the _.") is printed
and actions NEWTEXT & DONE are performed.

Otherwise the position of Object objno. is changed to worn, Flag
t is decremented and SM37 ("I'm now wearing the _.") is printed.

16

The CondActs

BEKOVE objno.

If Object objno. is carried or at the current location (but not
worn) then SM50 {"7'm not wearing the _.") is printed and actions
NEWTPEXT & DONE are performed.

If Object objno. is not at the current location, SM23 ("I'm not
wearing one of those.”) is printed and actions NEWTEXT & DONE are
performed.

If Object objno. is not wearable (and thus removable) then SM41
("I can't remove the _+") is printed and actions NEWTEXT & DONE
are performed.

If the maximum number of objects is being carried (Flag 1 is
greater than, or the same as, Plag 37), SM42 ("I can't remove the
_+ My hands are full.") is printed and actions NEWTEXT & DONE
are performed.

Otherwise the position of Object objno. is changed to carried.
Flag 1 is incremented and SM38 ("I've removed the _-") printed

CREATE objno.

The position of Object objno. is changed to the current location
and Flag 1 is decremented if the object was carried.

DESTROY objno.

The position of Object objno. is changed to not-created and Flag
1 is decremented if the object was carried.

SYAP objno1 objno2

The positions of the two objects are exchanged. Flag 1 is not
ad justed. The currently referenced object is set to be Object
objnoz.

PLACE objno. locno+

The position of Object objno. is changed to Location locno. Flag
1 is decremented if the object was carried. It is incremented if
the object is placed at location 254 (carried).

PUTO locno+

The position of the currently referenced object (i.e. that object
whose number is given in flag 51), is changed to be Location
locno. Flag 54 remains its old location. Flag 1 is decremented if
the object was carried. It is incremented if the object is placed
at location 254 (carried).

17

The CondActs

PUTIN objno. locno.

If Object objno. is worn then SM24 ("I can't. T'm wearing the
_JU is printed and actions NEWTEXT & DONE are performed.

If Object objno. is at the current location (but neither worn nor
carried), SM49 ("I don't have the _+") is printed and actions
NEWTEXT & DONE are performed.

If Object objno. is not at the current location, but not carried,
then SM28 ("I don't have one of those.") is printed and actions
NEWTEXT & DONE are performed.

Otherwine the poasition of Object objno. in changed to Locatian
locno. Flag ! is decremented and SM44 ("The _ is in the"), a
description of Object locno. and SM51 (".") is printed. :

TAKEOUT objno. locno.

If Object objno. is worn or carried, SM25 ("I already have the
_+") is printed and actions NEWTEXT & DONE are performed.

If Object objno. is at the current location, SM45 ("The isn't
in the"), a description of Object locno. and SM51 (™.") is
printed and actions NEWTEXT & DONE are performed.

If Object objno. is not at the current location and not at
Location locno. then SM52 ("There isn't one of those in the"), a
description of Object locno. and SMS51 (".") is printed and
actions NEWTEXT & DONE are performed.

If Object locno. is not carried or worn, and the total weight of
the objects carried and worn by the player plus Object objno.
would exceed the maximum conveyable weight (Flag 52) then SM473
("The _ weighs too much for me.") is printed and actions NEWTEXT
& DONFE are performed.

If the maximum number of objects is being carried (Flag 1 is
greater than, or the same as, Flag 37), SM27 ("I can't carry any
more things.") is printed and actions NEWTEXT & DONE are
performed. In addition any current DOALL loop is cancelled.

Otherwise the position of Object objno. is changed to carried,
Flag 1 is incremented and SM36 ("I now have the _.") is printed.

Fote: No check is made, by either PUTIN or TAKEOUT, that Object
locno. is actually present. This must be carried out by you if
required.

The CondActs

DROPALL

All objects which are carried or worn are created at the current
location (i.e. all objects are dropped) and Flag ! is set to O.
This is included for compatibility with older writing systems.
Note that a DOALL 254 will carry out a true DROP ALL, taking care
of any special actions included.

The next six actions are automatic versions of GET, DROP, WEAR,
REMOVE, PUTIN and TAKEOUT. They are automatic in that instead of
needing to specify the object number, they each convert
Noun(Adjective)l into the currently referenced object - by
searching the the object definition section. The search ias for an
object which is at one of several locations in descending order
of priority - see individual descriptions. This search against
priority allows PAW to 'know’ which object is implied if more
than one object with the same Noun description (when the player
has not specified an adjective) exists; at the current location,
carried or worn - and in the container in the case of TAKEOUT.

AUTOG

A search for the object number represented by Noun(Adjective)l is
made in the object definition section in order of location
priority; here, carried, worn. i.e. The player is more likely to
be trying to GET an object that is at the current location than
one that is carried or worn. If an object is found its number is
passed to the GET action. Otherwise if there is an object in
existence anywhere in the game or if Noun! was not in the
vocabulary then SM26 ("There isn't one of those here.") is
printed. Else SM8 ("I can't do that.") is printed (i.e. It is not
a valid object but does exist in the game). Either way actions
NEWTEXT & DONE are performed

AUTOD

A search for the object number represented by Noun(Adjective)! is
made in the object definition section in order of location
priority; carried, worn, here. i.e. The player is more likely to
be trying to DROP a carried object than one that is worn or here.
If an object is found its number is passed to the DROP action.
Otherwise if there is an object in existence anywhere in the game
or if Nouni1 was not in the vocabulary then SM28 ("I don’'t have
one of those.") is printed. Else SM8 ("I can't do that."”) is
printed (i.e. It is not & valid object but does exist in the
game). Either way actions NEWTEXT & DONE are performed

The CondActs

AUTOV

A search for the object number represented by Noun(Adjective)l is
made in the object definition section in order of location
priority; carried, worn, here. i.e. The player is more likely to
be trying to WEAR a carried object than one that is worn or here.
If an object is found its number is passed to the WEAR action.
Otherwise if there is an object in existence anywhere in the game
or if Nount was not in the vocabulary then SM28 ("I don't have
one of those.”) is printed. Else SM8 ("I can't do that.") is
printed (i.e. Tt is not a valid object but does exist in the
gama). FRither way actions NEWTEXT & DONE are performed

AUTOR

A search for the object number represented by Noun{Adjective)! is
made in the object definition section in order of location
priority; worn, carried, here. i.e. The player is more likely to
be trying to REMOVE a worn object than one that is carried or
here. If an object is found its number is passed to the REMOVE
action. Otherwise if there is an object in existence anywhere in
the game or if Noun! was not in the vocabulary then SM23 ("I'm
not wearing one of those.") is printed. Else SM8 ("I can't do
that.”) is printed (i.e. It is not a valid object but does exist
in the game). Either way actions NEWTEXT & DONE are performed

AUTOP 1locno.

A search for the object number represented by Noun(Adjective)1 is
made in the object definition section in order of location
priority; carried, worn, here. i.e. The player is more likely to
be trying to PUT a carried object inside another than one that is
worn or here. If an object is found its number is passed to the
PUTIN action. Otherwise if there is an object in existence
anywhere in the game or if Noun! was not in the vocabulary then
SM28 ("I don't have one of those.”) is printed. Else SM8 ("I
can't do that.") is printed (i.e. It is not a valid object but

does exist in the game). Either way actions NEWTEXT & DONE are
performed

AUTOT locno.

A search for the object number represented by Noun(Adjective)l is
made in the object definition section in order of location
priority; in container, carried, worn, here. i.e. The player is
more likely to be trying to get an object out of a container
which is actually in there than one that is carried, worn or
here. If an object is found its number is passed to the TAKEOUT
action. Otherwise if there is an object in existence anywhere in
the game or if Nounil was not in the vocabulary then SMS52 ("There
isn't one of those in the"), a description of Object locno. and
SM51 (".") is printed. Else SM8 ("I can't do that.") is printed
(i.e. It is not a valid object but does exist in the game).

20

The CondActs

Either way actions NEWTEXT & DONE are performed

Note: No check is made, by either AUTOP or AUTOT, that Object
locno. is actually present. This must be carried out by you - if
required.

COPYOO objno1 objn02

The position of Object objno2 is set to be the same as the
position of Object Objno1. The currently referenced object is set
to be Object objnoz.

There are four actions which allow various parameters of objects
to be; placed in flags, set from flags - for comparison or
manipulation.

COPYOF objno. flagno.
The position of Object objno. is copied into Flag flagno. This

could be used to examine the location of an object in
comparison with another flag value. e.g. :

COPYOF 1 i
SAME 11 38
could be used to check that object 1 was at the same location as

the player - although ISAT 1 255 would be better!
COPYPO flagno. objno.

The position of Object objno. is set to be the contents of Flag
flagno. An attempt to copy from a fiag containing 255 will result
in a run time error. Setting an object to an invalid location
will still be accepted as it presents no danger to the operation
of PAVW.

YHATO

A search for the object numbdber represented by Noun(Adjective)l is
made in the object definition section in order of location
priority; carried, worn, here. This is because it is assumed any
use of WHATO will be related to carried objects rather than any
that are worn or here. If an object is found its number is placed
in flag 51, along with the standard current object parameters in
flags 54-57. This allows You to create other auto actions (the
tuto;ial gives an example of this for dropping objectu in the
tree).

21

The CondActs

YEIGH objno. flagno.

The true weight of Object objno. is calculated (i.e. if it is a
container, any objects inside have their weight added - don't
forget that nested containers stop adding their contents after
ten levels) and the value is placed in Flag flagno. This will
have a maximum value of 255 which will not be exceeded. If Object
objno. is a conteainer of zero weight, Flag flagno. will be
cleared as objects in zero weight containers, also weigh zero!
Now ten actions to manipulate the flags;

SET flagno.

Flag flagno. is set to 255.

CLEBAR flagno.

Flag flagno. is cleared to O.

LET flagno. value

Flag flagno. is set to value.

PLUS flagno. value

Flag flagno. is increased by value. If the result exceeds 255
the flag is set to 255.

MINUS flagno. value

Flag flagno. is decreased by value. If the result is negative
the flag is set to O.

ADD flagno1 flagnoz

Flag flagno, has the contents of Flag flagno1 added to it. If the
result exceeds 255 the flag is set to 255.

SUB flagno, flagn02

Flag flagno, has the contents of Flag flagno1 subtracted from it.
If the resuft is negative the flag is set to O.

COPYFP flagno1 flagn02

The contents of Flag flagno1 is copied to Flag flagnoz.

22

The CondActs

RANDOM flagno.

Flag flagno. is set to a number from the Pseudo-random sequence
from 1 to 100. This could be useful to allow random decisions to
be made in & more flexible way than with the CHANCE condition.

MOVE flagno.

This is a very powerful action designed to manipulate PSI's. It
allows the current LS Verb to be used to scan the connections
section for the location given in Flag flagno. If the Verd is
found then Flag flagno. is changed to be the location number
associated with it, and the next condact is considered. If the
verb is not found, or the original location number was invalid,
then PAW considers the next entry in the table - if present. Thus
you could consider that PAW carries out the following imaginary
entries on exit from Response if no action has been done;

_ _ MOVE 38 ;Attempt to move player
DESC ;Describe his new loc.
. _ LT 33 14 ;Movement word? :
SYSMESS 7 ;"Can't go that way.."
DONE
SYSMESS 8 ;"I can't do that"

This feature could be used to provide characters with Random
movement in valid directions; by setting the LS Verb to a randonm
movement word and allowing MOVE to decide if the character can go
that way. Note that any special movements which are dealt with in
Response for the player, must be dealt with separately for a PSI
as well.

Three actions to manipulate the flags dealing with the player;

GOTO locmo.

Changes the current location to locno. Thin effectively seta flag
38 to the value locno.

WEIGHT flagno.

Calculates the true weight of all objects carried and worn by the
player (i.e. any containers will have the weight of their
contents added up to a maximum of 255), this value is then placed
in Flag flagno. This would be useful to ensure the player was
not carrying too much weight to cross a bridge without it
collapsing etc.

23

The CondActs

ABILITY value1 value2

This sets Flag 37, the maximum number of objects conveyadle, to
value' and Flag 52, the maximum weight of objects the player may
carry and wear at any one time (or their strength), to be value,.
No checks are made to ensure that the player is not already
carrying more than the maximum. GET and so on, which check the
values, will still work correctly and prevent the player carrying
any more objects, even if you set the value lower than that which
is already carried!

There are three actions which deal with the manipulation of the
flags for screen mode, format etc;
MODE mode option

There are four screen modes each controlled by Flag 40 and set
using the MODE action thus:-

Mode O

The screen is cleared before a location is described. SM32
("More...") appears when the screen area fills.

Mode 1

The screen is not cleared before a location is described.
SM32 ("More...") appears when the screen area fills.

Mode 2

The screen is cleared before a location is described. SM32
("More...") does not appear when the screen area fills.

Mode 3

The screen is not cleared before a location is described.
SM32 ("Mqrenﬂﬁ does not appear when the screen area fills.

PROMPT sysno.

Causes System message sysno. to be displayed whenever PAW obtains
a command line from the player. A value of O (default) will cause
PAW to select one of SM2, SM3, SM4 or SMS5 in the ratio
30:30:30:10 respectively. Note this does not affect the prompts
displayed by the END or QUIT condacts.

TIME duration option
Allows input to be set to 'timeout' after a specific duration in

1 second intervals, i.e. the Process 2 table will be called again
if the player types nothing for the specified period. This

24

The CondActs

action alters flags 48 & 49. ‘'option' allows this to also occur
on ANYKEY and the "More..." prompt. In order to calculate the
number to use for the option just add the numbers shown next to
each item to achieve the required combination;

1 - While waiting for first character of Input only.
2 - While waiting for the key on the "More..." prompt.
4 - While waiting for the key on the ANYKEY action.

e.g. TIME 5 6 (option = 2+4) will allow 5 seconds of inactivity
on behalf of the player on input, ANYKEY or "More..." and between
each key press. Whereas TIME 5 3 (option = 1+2) allows it only on
the first character of input and on "More...".

TIME 0 O will stop timeouts (default).

Three actions to deal with the printing of flag values on the
screen;

PRINT flagno.

The decimal contents of Flag flagno. are displayed without
leading or trailing spaces. This is a very useful action. Say
flag 100 contained the number of coins carried by the player,
then an entry in a process table of:-

MES 10 ;"You have "
PRINT 100 .
MESSAGE 11 ;" gold coins.'

could be used to display this to the player.
TURKS

SM17-20 "You have taken x turn(s).” is printed where x is Flag 31
+ 256 * Flag 32.

SCORE

SM21-22 "You have scored x%" is printed where x is Flag 30.

Five actions to deal with screen output and control;
CLS

Clears the screen.

EEVLINR

Prints a carriage return/line feed.

25

The CondActs

MES mesno.

Prints Message masno.

NESSAGE mesno.

Prints Message mesno., then carries out a NEWLINE action.
SYSKESS sysno.

Prints System Message sysno.

Three actions dealing with listing objects on the screen. The
first two are controlled by/set the value of flag 53 as described
in the chapter on objects.

LISTOBJ

If any objects are present then SM1 ("I can also see:") is
printed, followed by a list of all objects present at the current
location. If there are no objects then nothing (as in null, not
the word!) is printed.

LISTAT locno+

If any objects are present then they are listed. Otherwise SM53
("nothing.") is printed - note that you will ausuaily have to
precede this action with a message along the lines of "In the bag
is;”" etc. It would be possible to create an alternative to the
INVEN action described next by using WORN & CARRIED as parameters
for LISTAT.

IRVEN

This action is not affected by the continuous object list flag
for compatibility with older writing systems.

SM9 ("I have with ne:-") is printed. If no objects are carried
or worn SM11 ("Nothing at all.") is printed. Otherwise the object
text for each object that is carried or worn is printed on a
separate line. 1If an object is worn its objeci text is followed
by SM10 (" (worn)”). Action DONE is then performed.

The two actions which completely exit Response/Process execution;

DESC

Will cancel any DOALL loop, any sub-process calls and make a Jump
to describe the current location.

26

The CondActs

ERD

SM13 ("Would you like to play again?") is printed and the input
routine called. Any DOALL loop and sub-process calls are
cancelled. If the reply does not start with the first character
of SM31 a jump is made to Initialise. Otherwise the player is
returned to CP/M.

Three exit table actions;
DORE

This action jumps to the end of the process table and flags to
PAW that an action has been carried out. i.e. no more condacts or
entries are considered. A return will thus be made to the
previous calling process table, or to the start point of any
active DOALL 1loop.

NOTDONE

This action jumps to the end of the process table and flags PAW
that no action has been carried out. i.e. no more condacts or
entries are considered. A return will thus be made to the
previous calling process table or to the start point of any
active DOALL loop. This will cause PAW to print one of the "I
can't” messages if needed. 1i.e. if no other action is carried out
and no entry is present in the connections section for the
current Verb. .

0K
SM15 ("0K") is printed and sction DONE is performed.

Four actions to allow the current state of the game to be saved
and restored;

SAVE

This action saves the current game position (to a .PCP file) on
disc. 1In detail, SM60 ("Type in name of file.") is printed and
the input routine is called to get the filename from the player
in the form [d: filename where d: is an optional drive. If the
supplied filename is not acceptable SM59 ("File name error.”) is
printed and actions ANYKEY & DESC are performed. An attempt is
made at making the disc read/write (in case the disc has been
changed). If filename.$$3% exists it is deleted. If the
directory is full SM57 ("Directory full.") is printed and actions
ANYKEY & DESC are performed. filename.$$$ is created and the
current game position is written to it. If the disc is found to
be full SM58 ("Disc full.") is printed and actions ANYKEY & DESC
are performed. filename.$3$$ is closed. If filename.PGP exists
it is deleted. filename.$$3% is renamed to filename.PGP and

27

The CondActs

action DESC is performed. If the close or rename of filename.$$3
fails SK56 ("I/O ERROR! FILE NOT SAVED!") is pcinted and actions
ANYKEY & DESC are performed (however we could not reproduce this
error during testing).

LOAD

This action loads a game position (from a .PGP file) from disc.
In detail, a filename is obtained in the same way as for SAVE.
If filename.PGP does not exist SMS4 ("File not found.") is
printed and actions ANYKEY & DESC are performed. The current
game position is overwritten with the contents of filename.PGP
and is checked to be compatible with the current game. If it is
action DESC is performed otherwise SM55 ("File corrupt.”) is
printed, action ANYKEY is perTurumnd and the game is restarted.

RAMSAVE

In a similar way to SAVE this action saves all the information
relevant to the game in progress not onto disc but into a memory
buffer. This buffer is of course volatile and will be destroyed
when the machine is turned off which should be made clear to the
player.

RANLOAD flagno.

This action is the counterpart of RAMSAVE and allows the saved
buffer to be restored. The parameter specifies the last flag to
be reloaded which can be used to preserve values over a restore,
for example an entry of:

RAMLO _ COPYFF 130 255
RAMLOAD 254
COPYFF 255 730
DESC

could be used to maintain the current score, so that the player
can not use RAMSAVE/LOAD as an easy option for achieving 100%!

Note: unlike SAVE and LOAD the RAM actions allow the next Condact
to be carried out. They should normally always be followed by a
DESC in order that the game state is restored to an identical
position.

The actions could be used to implement an OOPS command that is
common on other systems to take back the previous move; by
creating an entry in Process 2 (or Response) which does an
automatic RAMSAVE every time the player enters a move.

Two actions to allow the game Lo b2 paused for -a time or until a
key is prassaed;

28

The CondActs

ANYKEY

SMt6 ("Press any key to continue™) is printed and the keyboard is
scanned until a key is pressed or until the timeout duration has
elapsed if enabled.

PAUSE value

Pauses for value/50 secs. However, if value is zero then the
pause is for 256/50 secs.

Two actions to deal with control of the parser;
PARSE

This action was designed to deal with speech to PSIs. Any string
(i.e. a further phrase enclosed in quotes [""]) that was present
in the players current phrase is converted into a LS -
overwriting the existing LS formed originally for that phrase. If
no phrase is present, or it is invalid, then PAW will look at the
next condact. Otherwise the next entry is considered with the
new LS of the speech made to the PSI. Because it overwrites the
current LS it must be used only in a sub-process table, the table
will have the form of:

_ _ PARSE ;Always do this entry

MESSAGE x ;"They don't understand”

DONE
word word CondAct list ;Any phrases PSI understands
_ MESSAGE X ;as above or different message

there will be two or more calling entries which will be similar
to:

SAY name SAME pos 38 ;Are they here?

PROCESS Yy ;Decode speech..

BONK ;L3 destroyed so always DONE.
SAY name MESSAGE 2z ;"They are not here!"

DONE

HEVTEXT

Forces the loso of any remaining phrases on the current input
line. You would use this to prevent the player continuing without
a fresh input should something go badly for his situation. e.g.
the GET action carries out a NEWTEXT if it fails to get the
required object for any reason, to prevent disaster with a
sentence such as:

29

The CondActs

GET SWORD AND KILL ORC WITH IT

as attacking the ORC without the sword may be dangerous!

One action to deal with sound
BELL

Rings the keyboard bell ie CTRL G.

Several actinnag 4 ich are more difficult to classify;
PROCESS procno.

This powerful action transfers the attention of PAW to the
specified Process table number. Note that it is a true
subroutine call and any exit from the new table (e.g. DONE, 0K
etc) will return control to the condact which follows the calling
PROCESS action. A sub-process can call (nest) further process'
to a depth of 10 at which point a run time error will be
generated.

DOALL locno+

Another powerful action which allows the implementation of an
"ALL' type command.

' - An attempt is made to find an object at Location lorno.
If this is unsuccessful the DOALL is cancellad wnl
action DONE is performed.

2 - The object number is converted into the LS Noun?i (and
Adjectivel if present) by reference to the object
delinition section. If Noun(Adjective)l matches
Noun(Adjective)2 then a return is made to step 1. This
implements the "Verb ALL EXCEPT object" facility of the
parser.

3 - The next condact and/or entry in the table is then
considered. This effectively converts a phrase of "Verd
A11" into "Verb object” which is then processed by the
table as if the player had typed it in.

4 - When an attempt is made to exit the current table, if
the DOALL is atill active {i.e. has not been cancellad
by an action) then the attention of PAVW is returned to
the DOALL as from step 1; with the object search
continuing from the next highest object number to that
just considered.

The main ramification of the search method through the object

30

The CondActs

definition section is; objects which have the Same
Noun(Adjective) description (where the game works out which
object is referred to by its presence) must be checked for in
ascending order of object number, or one of them may be missed.

Use of DOALL to implement things like OPEN ALL must account for
the fact that doors are often flags only and would have to be
made into objects if they were to be included in a DOALL.

RESET locno+

This action is designed to allow the implementation of multi-part
games where the objects which are not carried forward are reset
to their starting location.

All objects which can be carried between parts must be present
(with the same description) in each part. Any others may be
reused within each part at will.

Any objects which are present at the current location are moved
to Location locno. and the current location is set to be locno.
Any other objects are set to their start locations as specified
in the object definition section. No effect on flags. Action DESC
is performed when complete.

The suggested method of its use is given in the chapter on multi-
part games.

EXTERN value

Calls external routine with parameter value. There is a special
chapter dealing with this subject.

31

The Source file

Detailed Description of the Source file

The source file consists of a number of inter-related sections
describing the adventure. The sections are:-

The Control (CTL) section

This section tells the compiler which drive to put the database
on and whet character has been chosen as a null word. Throughout
this manual the null word is assumed to be an underline .

The Vocabulary (YOC) section

Each entry in this section contains a word (or the first five
characters), a word value and a word type. Words with the same
word value and type are called synonyms.

The System Messages (STX) section

This section contains the messages used by the Interpreter which
are numbered from O upwards. The description of the Interpreter
shows when these messages are used. In addition extra messages
can be inserted by the writer to provide messages for the game if
80 required.

The Message Text (MTX) section

This section contains the text of any messages which are needed
for the adventure. The messages are numbered from O upwards.

The Object Text (OTX) section

This section, which has an entry for each object, contains the
text which is printed when an object is described. An object is
anything in the adventure which may be manipulated and objects
are numbered from O upwards. Object O is assumed by the
Interpreter to be a source of light.

The Location Text (LTX) section

This section, which has an entry for each location, contains the
text which is printed when a location is described. The entries
are numbered from O upwards and location 0 is the location at
which the adventure starts.

The Connections (CON) section

This section has an entry for each location and each entry may
either be empty (null) or contain a number of movements. A
movement consists of a Verd (or conversion Noun) from the
vocabulary followed by a location number. This means that any
Verb {(or conversion Noun) with that word value caunses movement to
that location. A typical entry could be:-

32

The Source file

SOUTH 6
EAST 7
LEAVE 6
NORTH 5

which means that SOQUTH or LEAVE or their synonyms cause movement
to location 6, EAST or it's synonyms to location 7 and NORTH or
it's synonyms to location 5.

Note 1. When the adventure is being played it is only the LS Verbd
which will cause movement.

Note 2. If a movement is performed by an entry in the Response
table using the GOTO action, then it may not be needed in
the Connections table, unless that entry is required for
a P3I who can move unconditionally.

The Object Definition (0BJ) section
This section has an entry for each object which specifies:-

a) The location at which the object is situated at the
beginning of the adventure.)

b) The objects weight.)

¢) Whether the object is a container ie can contain other
objects.

d) Whether the object can be worn/removed.

e) The noun and adjective associated with the object.

The Process tables (PRO) section

This section forms the heart of the source file providing the
main game control.

The Response Table ie Process 0

Each entry contains the Verb and Noun for the LS the entry is to
deal with followed by any number of condacts. When the adventure
is played, if there is an entry in the table which matches the
Verb and Noun! of the LS entered then the condacts are performed.
The condacts that may be present and the effect that they have is
fully specified in the description of the Interpreter.

Process 1

Is scanned by PAW after a location is described, to allow any
additional information which forms a part of the location
description to be displayed.

Process 2

Is scanned by PAVW every time frame. That is after every phrase

33

The Source file
extracted from the player's input, or after every timeout on
input.
Process 3 (and upwards)
These are optional and define sub-processes that can bde
referenced using the PROCESS action.

Syntax of The Source File
The source file consists of a number of sections which must be
present in the correct order. A good example of a source file is
START.SCE. EBach line of the source file should be shorter than
256 characters. If not You mny get strange results. Any line
with a semicolon in column | is regard~1 a8 a comment. Blank

lines are only allowed in the process tables

In the definitions of each section of the source file which
follow:-

a) vw-s means white space ie spaces or TAB characters.
b) Items in [] are optional.
¢) EOL means End of line.
CTL
The Control section consists of 3 lines as follows:-
/CTL [comment] EOL

DBDRIVE [comment] EOL
NULLWORD [comment] EOL

Note a) DBDRIVE is the disk drive the database is to be written
to. t character A-P.
b) NULLWORD is the character to be used as a null word. i
character not a-2 or 0-9.
voc
The Vocabulary section starts with the line:-
/v0oC [comment] EOL
and can be followed by any number of lines as follows: -
[w-8] WORD w-s VALUE w-s WORDTYPE [w-s[;comment]] EOL
Note a) only the 1st 5 chars of WORD are significant,
b) they are converted to upper case & only A-Z 0-9 allowed,

34

The Source file

c) duplicate words are not allowed,
d) VALUE is in range 1-254 (On the Spectrum version the
range is 2-254),
e) WORDTYPE must be one of the following:- VERB
NOUN
ADJECTIVE
ADVERB
PREPOSITION
PRONOUN
CONJUGATION
f) In the interpreter Nouns < 20 can be used as verbs if no
verb is entered. Verbs < 14 are used as movement words.

STX, MTX, OTX & LTX

The System Message Text section starts with the line:-
/STX [comment] EOL

The Message Text section starts with the line:-

/MTX [comment] EOL

The Object Text section starts with the line:-

/0TX [comment] EOL

The Location Text section starts with the line:-

/LTX [comment] EOL

Within each section each entry consists of:-
/n [w-s [comment]] EOL

then any number of text lines not starting with /

Note a) n must be consecutive & start at O
b) STX limit is 60-255
c) MTX limit is 1-255%
d) OTX limit is 1-255
e) LTX limit is 1-2%52

NB The text lines should only contain normal ASCII printable
characters. The Compiler will give you a warning if it finds any
control characters in the text. Any character with a value less
than decimal 32 is conaidered a control code including TAB's.
Note that the Compiler only gives a warning about control codes -
If you leave them in it may confuse the Interpreter and some
control codes may also confuse the Compiler.

35

The Source file

The Compiler joins consecutive non-null lines with a space eg

I | will be printed by the Interpreter as
am big. |
So are you. I T am big. So are you.

The Compiler converts null lines into carriage returns eg

I am] will be printed by the Interpreter as
big. |
]I am big.
So | So are you.
are you.
Similarly
| will be printed by the Interpreter as
I am big. |
| I am big.
]
So are] So are you.
you. |
CON

The Connections section starts with the line: -

/CON [comment] EOL

Each entry consists of:-

/n [w-s [comment]] EOL

then any number of lines

{w—s] WORD w-s LOCNO [w-s[;comment]] EOL

Note a) There must be the same no of entries as in LTX.
b) n must start at O & be consecutive.
¢) WORD must be in the vocabulary as a Verb (or Noun < 20).
d) LOCNO must be specified in LTX.

OBJ

The Object Definition section starts with the line: -

/OBJ [comment] EOL

36

The Source file

BEach line consists of:-
/n w-3 LN w-3 WT w-s CONT w-s WR w-s NOUN w-s ADJ [w-s[;com]] EoL

Note a) n must start at O & be consecutive.
b) There must be the same number of entries as OTX.
¢) LN is the objects position at the start of the adventure
and must be specified in LTX, or be 252-254, WORN,
CARRIED or the null word character.
252 and the null word character mean not created
253 and WORN mean worn
254 and CARRIED mean carried
d) WT is the objects weight in the range 0-63.
e) CONT specifies if the object is a container. It can be Y
or the null word.
f) WR specifies if the object can be worn/removed. It can
be Y or the null word.
g) NOUN is a noun in the vocabulary which refers to the
object or the null word.
h) ADJ is an adjective in the vocabulary which refers to the
object or the null word.
i) If an object starts worn then WR must be Y
j) You cannot specify an Adjective without a noun.

PRO

The Process section consists of a number of tables starting with
the line:-

/PRO [w-s] n fw-s[comment]] EOL

Note a) n is the number of the Process table and must start at O
and be consecutive.
b) You must always specify a minimum of 3 process tables ie
Nos. 0-2.
¢) Blank lines between entries or lines starting w-s; are
ignored.

Each entry starts with:-
V w-s N w-s KEYWORD [w-s PARAMI [w-s PARAM2]] [w-s[;comment]] EOL
then any number of:-
w-s KEYWORD [w—s PARAM!Y [w-s PARAM2]] [w-s[;comment]] EOL
Note a) V must be a verb in the vocabulary, a noun < 20 in the
vocabulary or the null word character.
b) N must be a noun in the vocabulary or the null word

character.
¢) KEYWORD can be a CONDITION or ACTION.

37

The Source file

d) Anything starting in col 1 is assumed %to be the start of
the next entry.

The CONDITIONS & ACTIONS and their parameters are:-

Conditions Actions

AT locno INVEN

NOTAT locno DESC

ATGT locno QUIT

ATLT locno END

PRESENT objno DONE

ABSENT objno OK

WORN objno ANYKEY

NOTWORN objno SAVE

CARRIED objno LOAD

NOTCARR ot jno TURNS

CHANCE percent SCORE

ZERO flagno CLS

NOTZERO flagno DROPALL

EQ flagno value AUTOG

GT flagno value AUTOD

LT flagno value AUTOW

ADJECT1 adjective AUTOR

ADVERB adverbd PAUSE value

TIMEOUT GOTO locno

ISAT objno locno+ MESSAGE mesno

PREP preposition REMOVE objno

NOUN2 noun GET objno

ADJECT2 adjective DROP objno

SAME flagno flagno WEAR objno

NOTEQ flagno value DESTROY objno

NOTSAME flagno flagno CREATE objno

ISNOTAT objno locno+ SWAP objno objno
PLACE objno locno+
SET flagno
CLEAR flagno
PLUS flagno value
MINUS flagno value
LET flagno value
NEWLINE
PRINT flagno
SYSMESS smesno
COPYOF objno flagno
COPYOO objno objno
COPYFO flagno objno
COPYFF flagno flagno
LISTOBJ
EXTERN value
RAMSAVE
RAML,OAD flagno
BELL
ADD flagno flagno

38

The Source file

SUB flagno flagno
PARSE

LISTAT 1locno+

PROCESS prono

MES mesno

MODE value

TIME value value

DOALL locno+

PROMPT smesno

WEIGH objno flagno
PUTIN objno locno

TAKEOUT objno flagno
NEWTEXT

ABILITY value value

WEIGHT flagno

RANDOM flagno

WHATO

RESET locno

PUTO locno+

NOTDONE

AUTOP

AUTOT

MOVE

Note a) flagno & value are in the range 0-255.
'b) percent is in the range 1-99.
c) objno must be defined in OTX.
d) mesno must be defined in MTX.
e) smesno must be defined in STX.
) prono must be the number of a process table.
) locno must be defined in LTX.
) locno+ must be defined in LTX or be 252-255 or the null
word character "WORN', 'CARRIED' or 'HERE'.
) adjective must be an adjective in the vocabulary or the
null word character.
j) adverd must be an adverbd in the vocabulary or the null
word character.
k) preposition must be a preposition in the vocabulary or
the null word character.
1) noun must be a noun in the vocadbulary or the null word
character.

LERK

A line starting with /LMK may appear anywhere in the source file
and it forces the Compiler to switch to a different source file
(but on the same drive). Note that everything following the /LNK

statement in the current file is ignored. Its syntax is:-

/LNK [w-s] filename
eg /LNK srcfile?2 will switch to SRCFILE2.SRC

39

The Compiler

Detailed Description of the Compiler

The Compiler has been specially designed so that it does not stop
as soon as it finds an error. The processing is as follows:-

Process the command line.
If any errors found stop.
Open the print file .PRN (if required)

Process CTL

if no errors found open the database file .$3$$ (if required)

if no errors found
if no errors found
if no errors found

process VOC, STX, MTX, OTX & LTX
process CON, OBJ & PRO
process the end routines.

Print Compilation ends QK
or Compilation ends with n WARNING(S)
or Compilation ends with n ERROR(S)
or Compilation ends with n ERROR(S) and n WARNING(S)

Using the Compiler

A>PAWCOMP CAVE

A>PAWCOMP d:CAVE

A>PAWCOMP CAVE P

A>PAWCOMP CAVE Pr

A>PAWCOMP CAVE N

A>PAWCOMP CAVE C

A>PAWCOMP d:CAVE N C Pr

would compile CAVE.SCE on the default
drive and create a file called CAVE.PDB.

would compile d:CAVE.SCE and create a
file called CAVE.PDB.

would compile CAVE.SCE on the default
drive creating a file called CAVE.PDB &
redirect compiler print to CAVE.PRN on
the default drive.

would compile CAVE.SCE on the default
drive creating a file called CAVE.PDB &
redirect compiler print to r:CAVE.PRN.

would compile CAVE.SCE on the default
drive without writing a PDB file (ie it
just checks syntax).

would compile CAVE.SCE on the default
drive and compress the text so that the
database takes less room.

gives a combination of the previous
examples.

Remember P for a Print file
N for No database
and C to Compress the text

40

The Compiler

Compressing the text

If this option is selected a dictionary of 128 predefined common
letter groupings is included in the database. During the
compilation all texts (except object texts) are scanned for each
of these 128 common letter groupings and if found they are
replaced with a 1 byte token in the range 128-255. This method
of compression can reduce the space occupied by text by over 40%.

Note a) Compressing text will take longer than not compressing
text.

b) The 128 predefined common letter groupings are mainly in
lower case. If your texts are mainly in upper case you
may get a negative saving ie the database may occupy more
space rather than less.

41

Errors and Varnings

Brrors and Varnings

Compiler WARNINGS

There are 3 types of warning+ Lhat can be issued:-

1)

2)

3)

Datadbase too big for current memory by n bytes

The Interpreter will be unable to run the adventure with the
current memory.

Control character present in text - value(n)

The Compiler has found a character with value n (0-32
decimal). This character may confuse the Interpreter.

Character value > 127 present in text - value(n)

The Compiler has found a character with value n (t128-255
decimal). These values are used for compress tokens so
cannot be used in the text. You will get an error instead of

a warning if you try to compress the text with these
characters present.

Compiler ERRORS

¥henever an error is found the line number of the source file and
the contents of the line are printed when appropriate then the
error number and error reason. The errors that can be found
are;-

0)

2)

3)

42

Max texts already processed

The maximum No. of texts allowed in this section have already
been defined.

Valid word not found xxxx

Either a parameter was missing or an invalid character was
detected. xxxx may not be present in the message.

No. (1-254) not found
A numdber in the range 1-254 was expected but not found.

Too many parameters

Too many parameters have been specified. Possibly the ; has
been left out at the beginning of a comment.

5)

6)

7)

8)

9)

10)

1)

12)

13)

14)

Errors and Varnings

Vocab limit exceeded ~ VOCAB too big!

There is a limit on the size of the vocabulary which has now
been reached. The 'nn words procesased' measnapge which
follows, shows by how many words your vocabulary is too big.

xxxx is not in Vocabulary

Word xxxx has not been defined in the vocabulary.

Connections for all locations already processed

Movements for all locations specified in LTX have been
processed but the end of the CON sgsection has not been
reached.

Location No. not found

A location No. was expected but not found.

Location No. too big

The location No. specified has not been defined in the LTX
section.

Entries for all objects already processed

Entries for all objects specified in the OTX section have
been processed but the end of the OBJ section has not been
reached.

Start of entry expected

The compiler expected. this line to be the start of an entry.
System message No. not found

A System message No. was expected but not found.

Percentage not found

A percentage was expected but not found.

Percentage out of range

The percentage specified is outside the range 1-99.

xxxx 13 not a condition or action

xxxx is not a recognised condition or action.

43

Brrors and Warnings

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

44

Object No. not found
An object No. was expected but not found.
Object No. too big

The object No. specified has not been defined in the OTX
section.

Message No. not found
A message No. was expected but not found.
Message No. too bdig

The message No. specified has not been defined in the MTX
section.

Flag No. not found or too big
A flag No. was expected but was not found or was > 255.
System message No. too big

The System message No. specified has not been defined in the
STX section.

Value not found or too big

A value was.expected but was not found or was > 255.

Table limit exceeded

The compiler has an area of memory which it uses for 2
things. Firstly it has to store all of the vocabulary in it
(7 bytes for each word). Then whatever remains is used as a
work area for processing this table (4 bytes for each entry).
This area of memory is now full! The 'nn entries processed
successfully' message which follows, shows by how many

entries this section is too big.
/nn expected

The next entry expected should start /nn.

Invalid File Name

The file name in the command line or /LNK statement contained
some invalid characters.

25)

26)

27)

28)

29)

30)

31)

32)

33)

34)

35)

36)

Errors and Yarnings

Drive A-P not found

A drive identifier in the range A-P was expected but not
found.

Object starts worn but is unwearable
If an object starts the game worn then it must be wearabdble.
Invalid null word character

An invalid character has been specified as the null word
character.

Adventure Name not given

An adventure name could not be found in the command line.
Invalid drive x

An invalid drive {(not A-P) was specified on the command line.
Parameters missing

A parameter was expected but has not been supplied.
Insufficient System messages

System messages 0-60 must be specified.

Connections for remaining locations missing

You must specify connections for every location specified in
LTX.

Entries for remaining objects missing

You must specify a definition for every object specified in
OTX.

Unable to open xxxx

The database file xxxx could not be opened. eg Disk
directory full.

Failure to rename xxxx

The database file .$3% could not be renamed to .PDB

Duplicate word xxxx

The word xxxx has been defined twice in VOC. Remember that

only the first 5 characters are significant.

45

Errors and Warnings

37)

38)

39)

40)

41)

42)

43)

44)

45)

46)

47)

48)

46

xxxx not found

The source file xxxx could not be found.

Disk full

There is insufficient disk space for the database.
Illegal use of Flag 38

You have specified an illegal use of Flag 38 eg SET 38,
LET 38 x - where x is greater than the No. of locations.

A container needs a corresponding location

For an object to be a container there must be a location with
the same No. as the object.

xxxx expected

The next section expected should start with xxxx.
Valid word type not found xxxx

xxxx is not a valid wordtype.

Object weight not found

An Object weight was expected but not found.

xxxx is not a(n) yyyy

A particular wordtype (yyyy) is expected here but xxxx is not
that type.

Adjective specified without noun

To specify an adjective you must also specify & noun.
/PRO nnn expected

The next section expected should start with /PRO nnn.
Process table No. not found or too big

A Process table No. was expected but was not found or was >
255.

Process table No. out of range

In the PROCESS action only Process table Nos from 2 to 254
are allowed.

49)

50)

51)

52)

53)

54)

nn)

Int

Brrors and ¥arnings

You can only PUTIN to or TAKEOUT of a container

You are trying to put an object into something which is not a
container or you are trying to take an object out of
something which is not a container.

Wearable indicator not found or invalid x

A 'Y' or the nullword character was expected but not found.
x may not be present,

Object weight too big
Object weights must be in the range 0-63.
Container indicator not found or invalid x

A 'Y' or the nullword character was expected but not found.
x may not be present,

Character value > 127 present in text - value(n)

The Compiler has found a character with value n (128-255
decimal). These values are used for compress tokens so
cannot be used in the text. You cannot compress text which
has these values in it.

Database much too big

The database is so big that it has wrapped around from 65535
to O!

Compiler error nn

There is an error within the compiler. More specifically one
of the internal checks within the compiler has failed.
Firstly try re-compiling your adventure. If it fails a
second time, try again using your backup copy of the compiler
in case your normal copy has become corrupt. If the problem
persists contact GILSOFT - we will be pleased to help you.

erpreter Initialisation Brrors

The following messages may be issued during Interpreter

ini

1)

tialisation:-
File name error

The filename must be unamdiguous. eg PAWINT TUT* is invalid.

47

Brrors and Varnings

2) Second parameter can only be 'C’

The only valid second parameter is C. eg PAWINT TUTORIAL B is
invalid.

3) Database not found

Either you have not specified a database name or the databaase
cannot be found.

4) Database too big by approx nnn

Your database is too big for the current memory size. There
are four things you might be able to do:-

a) Get more memory! or a bigger computer!

b) Squash the database by using the compress option when
compiling.

c) Make the databane smaller.

d) Split the database into two or more smaller adventures.

. 5) Database incompatible with this version

Either the database is corruﬁt or it was written using a
compiler which is not compatible with your Interpreter.

Interpreter Runtime Brrors

Although we do as much checking as we can in the Compiler there
are a few errors that cannot be detected until runtime.

¥hen a RUNTIME error occurs yYou will be presented with the
following information provided that diagnostics are available:-

a) The error No.

b) The Process Table No.

¢) The word values of the entry concerned
d) The Condition/Action No.

a) The error Nos. have the following meanings:~
1) An attempt to set flag 38 (current location) too high
2) An attempt to put ‘an object at location 255
3) An attempt to stack PROCESS calls too deep
4) An attempt to stack DOALL's
5) An invalid Condition/Action No. (Corrupt Database?!)
b) The Process Table No. should need no further explanation.

¢) The word values can be looked up in the Vocabulary. NB A word
value of 255 means the nullword character.

48

Errors and Varnings

d) The valid Condition/Action Nos have the following meanings:-

“—owOIrVMPHPULN—-O

- o ea
=N AW

18

AT
NOTAT
ATGT
ATLT
PRESENT
ABSENT
WORN
NOTWORN
CARRIED
NOTCARR
CHANCE
ZERO
NOTZERO
EQ

GT

LT
ADJECT1
ADVERB
INVEN
DESC
QUIT
END
DONE

0K
ANYKEY
SAVE
LOAD
TURNS
SCORE
CLS
DROPALL
AUTOG
AUTOD
AUTOW
AUTOR
PAUSE
TIMEOUT
GOTO
MESSAGE
REMOVE
GET
DROP
WEAR
DESTROY
CREATE
SWAP
PLACE
SET
CLEAR
PLUS
MINUS

49

Brrors and Varnings

NB You must test your adventure to ensu

51
52
53
54
55
56
57
58
59
60
61
62
63
64
68
69
70
VAl
T2
73
74
75
76
77
79
80
81
83
85
86
88
89
90
91
92
93
94
95
100
101
102
103
104
105
106

LET
NEWL INE
PRINT
SYSMESS
ISAT
COPYOF
COPYOO
COPYFO
COPYFF
LISTOBJ
EXTERN
RAMSAVE
RAMLOAD
BELL
PREP
NOUN2
ADJECT?2
ADD

SUB
PARSE
LISTAT
PROCESS
SAME
MES
NOTEQ
NOTSAME
MODE
TIME

 DOALL

PROMPT
ISNOTAT
WEIGH
PUTIN
TAKEOUT
NEWTEXT
ABILITY
WEIGHT
RANDOM
WHATO
RESET
PUTO
NOTDONE
AUTOP
AUTOT
MOVE

these runtime errors.

50

re you do not get any of

The EBssays

The Essays

There now follows a discussion of several topics which rely on
several features of PAW in combination and are thus not so easy
to describe under any one heading:

The parser gives a little English lesson.

Objects will be more flexible after reading this.
Multi-part games for when memory just isn't big enough.
Light & Dark throws some light on the matter?

EXTERN nspecially for any internees.

PSIas add a bit of character to your games!

Enough of the frivolity there are pages to fill...

The Parser

The parser works by scanning an input line (up to 125 characters)
for words which are in the vocabulary, extracting 'Phrases' which
it can turn into Logical sentences.

When a phrase has been extracted, the Response and Connections
tables are scanned to see if the Logical Sentence is recognised.
If not then system message 8 ("I can’'t do that") or systenm
message 7 ("I can't go in that direction”) will be displayed
depending on the Verd value (i.e. if less than 14 then systen
message 7 will be used) snd a new text input is requested. A new
text input will also be requested if an action fails in some way
(e.g. an object too heavy) or if the writer forces it with a
NEWTEXT action. The results might otherwise be catastrophic for
the player. e.g. GET AXE AND ATTACK TROLL, if you don't have the
axe you wouldn't really want to tackle the Troll!

If the LS 1is successfuily executed then another phrase is
extracted or new text requested if there is no more text in the
buffer., ’

Phrases are separated by conjugations ("AND" & "THEN" usualily)
and by any punctuation.

A Pronoun {("IT" usually) can be used to refer to the
Noun/Adjoctive uned in the preovious Phrane - evan if this wnan n
separate input. Nouns with word values less than 50 are Proper
Nouns and will not affect the Pronoun.

The Logical Sentence format is as follows:-
(Adverb)Verb(Adjectivel(Nount))(preposition)(Adjective2(Noun2))
where bracketed types are optional. i.e. the minimum phrase is a

Verdb (or a Conversion Noun - which is a Noun with a word value

51

The Essays

if no Verb is found in a phrase will be converted into a Verd
e.g. NORTH). If the Verb is omitted then the LS will assume the
previously used Verb is required. i.e. GET SWORD AND SHIELD will
work correctly! The current 'IT' (pronoun) will become the first
Noun in a 1ist like this. Ie 'IT' would be replaced with SWORD in
the example. It (if you will excuse the pun) will not change
until a different Verdb (or conversion Noun) is used.

Note that the phrase does not strictly have to be typed in by the
player in this format. As an exanmple:

GET THE SMALL SWORD QUICKLY
QUICKLY GET THE SMALL SWORD
QUICKLY THE SMALL SWORD GET

are all equivalent phrases producing the same LS. Although the
third version is rather dubious English.

A true sentence could be:-

GET ALL. OPEN THE DOOR AND GO SOUTH THEN GET THE BUCKET AND
LOOK IN IT.

which will become five LS's:-

GET ALL

OPEN DOOR (because THE is not in the vocabulary)
SOUTH (because GO is not in the vocabulary)
GET BUCKET

LOOK BUCKET {(from IT) IN (preposition)

Note that DOALL will not generate the object described by
Noun(Adjective)2 of the Logical sentence. This provides a simple
method of implementing EXCEPT. e.g. GET ALL EXCEPT THE FISH, it
has the side effect of not allowing PUT ALL EXCEPT THE FISH IN
THE BUCKET, as this has three nouns!

52

The Essays

Objects

Underlines in text will be converted during gameplay into a
description of the last object referenced by GET,DROP,DESTROY
etc. This is mainly to deal with the fact that GET,DROP etc
report their success (or failure!) but can be used usefully for
examining objects and other automatic reports. Flag 53 is used
to control the way objects are displayed when the LISTOBJ and
LISTAT actions are used. If the flag is set to 64 (i.e. Bit 6 is
set) then objects will be listed without newlines between them,
forming a valid English sentence - compound listing.

The formats are as follows:
SM53 ("nothing.") - can only occur with LISTAT
object SM4a8(".")
object SM4T7(" and ") object SM48(".")
object SM46(", ") object SM47(" and ") object SM48(".")

In addition, Bit 7 of flag 53 will be set (i.e. flag will be
greater than 127) if any objects were printed. This allows you to
determine whether or not a NEWLINE is required.

A LISTAT action will usually be preceded by a message.

The description of object is constructed from the full
description given in the object text section. The preferred
format for an object description is:

indefinite.article (adjective) noun . extra text-

vhere; the indefinite article is "A" or "An" or "Some". The
Adjective and the Noun should have a lower case letter e.g. 'A
amall key', 'Some sand' or 'An orange. Rather mouldy'. PAW
extracts a description of the object in two ways:

t/ For GET, DROP etc (i.e. "_") the indefinite article is
skipped and the description printed up to (but not
including) the first full stop. e.g. "I now have the small
key.".

2/ For a compound list of objects the indefinite article is
forced to start with a lower case letter and the description
printed up to (but not including) the first full stop. e.g.
"In the bag is a small key.".

Obviously if you don't use underline or compound listings, then
you are free to describe objects any way you like.

Important: If an object is to be a container; there must be an
unused location with the same number for PAW to use as the
'inside'! i.e. Object objno. 1 Wwould need Location locno. ! - Not
forgetting to mark it as a container in the object definition
section.

53

The Essays

Creating Multi-Part Adventures

In order to create a larger (and thus more interesting) play area
in an adventure, without sacrificing the quality of the
description, you can split the game into smaller sections. It is
best to do this with a game that lends itself to having several
areas, with only one Jjoin between each, this is called a
bottleneck. e.g. a game where setting sail on a boat is the
final task in the first part.

To allow the score, turns taken and other information to bve
carried forward into the next game you must use the LOAD/SAVE
game position actions. In order to load a game position into a
different game to that which it was saved from, you need the same
number of locations and objects in each part. In addition, all
objects which may possibly be carried forward by the player, must
have the same description in all parts.

Let's take a game with 120 locations, that is to be split in
half, thus requiring 60 locations in each part. Actually location
60 will exist in both games as the transition location (where the
pPlayer starts and finishes) and a spare flag (say 26) will be
used to indicate which part of the game a position is from. So
when the player completes part 1 they are moved to location 60
and flag 26 is set to 1 to show it.

The setup for part ! would be:

Location 60

End of Part 1 - Prepare a disc to save your position.
(You may save more than one copy if you like).

Please LOAD part 2 and follow the onscreen prompts.

Process 1

_ _ AT 60 ;End of game?
LET 26 1 ;Valid position from part 1.
SAVE

And in part 2:

Location O
Part 2 - Prepare to load disc with saved position.

Location 60
Any introduction wanted for Part 2.

Process 1

AT 0 sJust starting?
LOAD ;Will then be at another location.

54

The Fosayan

NOTEQ 26 i ;Not a valid position from part 1.
- - GOTO o] ;S0 request another 1load.
DESC
AT 60 ;jJust loaded a valid position
- - ANYKEY ;Wait until introduction read
RESET 1 ;Start game properly at location 1

The RESET action does a DESC of the new start location
automatically, after setting all objects that aren't carried,
worn or at location 60 to their starting position. Note that you
should insert any CLEAR actions for flags between the ANYKEY and
the RESET as the flags are not affected by the RESET.

Light and Dark

Darkness is becoming something of a cliche in adventures these
days, but used correctly it can add to the sense of realism
considerably.

Within PAW, darkness is created by setting flag O to a value
other than 0. This must be done whenever the player moves into
and out of darkness. i.e. the move must be done with a GOTOQ in
the Response table, to allow the SET or CLEAR action to occur.

If the player is being provided with a source of light then
object O is the easiest way of implementing it. A source of light
does not have to be a torch or candle, with a little imagination
it can be infra-red glasses or a wide beam laser!

Take for example the creation of a night and day cycle, over 24
time frames which we will assume are equivalent to 1 hour.

The entries required in Process 2 are:

- _ EQ 5 0 ;End of cycle

LET 5 24 ;Start the counter again
- - EQ 5 18 ;Nightfall

SET 0

MESSAGE x
—- — EQ 5 6 ;Daybreak

CLEAR 0

MESSACE y

Importantly if part of the game is underground, or inside a
building, don't forget to determine if the player can actually
see nightfall and daybreak from where they are, before printing
the messages.

55

The Essays

EXTERK

The EXTERN command can be used to call your own machine language
program. This feature can be utilized only in a final game as the
Interpreter needs to be patched to point at your bit of machine
code. See file PAWINST.TXT for more information on the EXTERN
action and how your piece of machine code must interface with the
Interpreter.

56

The Essays

Pseudo-Intelligences

The main thing to remember is that a character (or PSI) is a word
in the Vocadulary (usually a Noun with a value less than 50 so as
to be a Proper Noun). Some flags, a series of messages and some
entries in one or more Process tables. One flag shows where they
are, the messages provide information about their actions and the
process table entries tie it all together.

So imagine & character called Sanec who can walk around
independently. He is described in the vocabulary as SANEC (word
value 25, Noun). Flag number 20 is used to give his location,
Process table 3 will deal with speech to him. While Process
table 4 will deal with his movements and actions. The following
entries allow him to move around when you ask him too. After a
short time he will get ‘'bored’ and vanish in a puff of smoke!

Message 1
Sanec did not seem to understand what you said.

Message 2
No one of that name here!

Message 3
Sanec replies "hello" in a gruff voice.

Message 4
Sanec wanders that way as he has nothing better to do.

Message 5
Sanec the wizard is here.

Message 6
Sanec 'politely’ ignores what you say.

Message 7

Sanec turns to face you and in his gruff voice announces;
"I'm bored with all this, I'm off to a bigger game”

and promptly vanishes in a puff of green smoke!

First; Sanecs' presence at a location must be announced. So in
Process 1 (which is called after every describe of a location) we
check if he is here i.e. flag 20 (his location) is the same as
flag 38 (our location). Note that we ensure we are not at
location O as this is always an introduction screen.

_ SAME 20 38 ;Ensure Sanec is here
NOTAT 0 ;Player is not in location 0.
MESSAGE 5 ;Say Sanec is here.

To deal with speech to Sanec, we need two entries in Response as
follows:-

57

The Essays

SAY SANEC PREP T0 ;this could be omitted to allow
H short Verdb Noun sentences %to be
H understood

SAME 20 38 ;Make sure Sanec is here

PROCESS 3 ;Deal with any speech

DONE ;jPrevent drop through with new LS.
SAY _ PREP TO ;again optional

MESSAGE 2 ;jno one of that name here!

DONE

The following entries in Process 3:-

PARSE ;This entry always carried out to

K - convert the input string to a LS.
MESSAGE 1 ;PARSE comes here if it fails to
H find a valid phrase
DONE ;Note that the LS is corrupt and no
s further table entries must be
H executed
HELLO _ MESSAGE 3 ;Assuming HELLO is a verb in vocab
DONE ;S0 that SAY TO SANEC "HELLO" works
_ _ LT 33 14 ;A movement word said to Sanec?
MOVE 20 ;See if a connection for that way
MESSAGE 4 ;Come here and tell player if so
DONE
_ _ MESSAGE 6 ;He ignores you (i.e. nothing else)

Obviously many more entries would be required to give Sanec an
appearance of understanding speech, but with a few clever entries
he can give a wide variety of responses.

Finally; to give Sanec a chance of disappearing when bored, we
need an entry in Process 4 of:

_ _ EQ 20 2 ;SANEC at location two?
CHANCE 10 ;104 chance
SET 20 ;jLocation 255 does not exist
AT 2 ;are we where he was?
MESSAGE 7 ;POOFF! - tell player he disappeared

And an entry in Process 2 to call table 4 regularly:

PROCESS 4 ;Process SANEC

In this way a very convincing character can be built up. They add
a great deal to the sense of realism in games. Especially if
interaction with them is required as part of the_solution.

58

Summary

The system messages

SMO - is used instead of the location description when it is
dark.
SM1 - is printed by LISTOBJ if at least one object is present.

SM2 to SM5 - are the four input prompts which are selected
randomly unless flag 42 is set to be a valid message number.

SM6 - is produced by the parser when no further phrase can be
understood.

SM7 - is produced if no action was carried out (or NOTDONE was)
in Response when the Verb is < 14

SM8 ~ is produced if no action was carried out (or NOTDONE was)
in Response when the Verbd is > 13

SM9 to SM11! - are printed by action INVEN.

SM12 - printed by QUIT

SM13 and 14 - are printed by the END action.

SM15 -~ the OK action message.

SM16 - the ANYKEY action message.

SM17 to SM20 - are the TURNS action messages.

SM21 and SM22 - are the SCORE action messages.

SM23 to SM29 - are the first of many messages produced by the
object manipulating actions.

SM30 - the positive response expectad by END and QUIT.

SM31 - the negative response expected by END and QUIT.

SM32 - produced when a screen full of text has appeared.

SM33 - the input marker.

SM34 - spare. {Cursor on Spectrum PAW)

SM35 - displayed when a timeout occurs

SM36 to SM45 - are more messages produced by the object
manipulating actions.

SM46 ~ the link between objects when listing continuously

SM47 - the final link between the last two objects when listing
SM48 - the termination of a list of objects (printed by both
LISTOBJ and LISTAT, so take care.)

SM49 and SM50 - yet more object messages

SM51 - the termination for a compound sentence on PUTIN/TAKEQUT
(and AUTOP/AUTOT)

SM52 - a final object message.

SM53 - message for LISTAT action if no objects found.

SM54 to SM60 are messages used by the SAVE and LOAD actions.

SM61 onwards are free to be used for your own use. PAW on other

machines may use more messages, so bear this in mind if you
intend transferring the adventure to another version.

59

Summary

Function of P.A.VW. Flags

The normal flags are free for use in any way in games. The auto
decrement flags (2 to 10) are also free for use, but be sure you
know in which situations they are reduced before using them.
Other flags should mostly only be set using the appropriate
action, but useful tests can be carried out on their contents.

Flag O When non zero indicates game is dark (see also object 0O)

Flag 1 Holds quantity of objects player is carrying (but not
wearing)

The following 9 flags are decremented if non zero by PAVW;

Flag 2 When a location is described

Flag 3 When a location is described and it's dark (Flag 0 not 0)

Flag 4 When a location is described, it's dark and object 0 is
absent

Flags 5 to 8 Every time frame ({i.e. every phrase/timeout)

Flag 9 Every time frame that it's dark

Flag 10 Every time frame that it's dark and object O is absent

Flags 11 to 28 are free for use in your own games

Flag 29 holds the Picture Control flags in the Spectrum version
of PAVW.

Flag 30 Score flag
Flag 31/32 (LSB/HSB) holds number of turns player has taken

(actually this is the number of phrases extracted from
the players input).

Flag 33 holds the Verb for the current logical sentence

Flag 34 holds the first Noun in the current logical sentence
Flag 35 holds the Adjective for first Noun

Flag 36 holds the Adverd for the current logical sentence

Flag 37 holds maximum number of objects conveyable (initially 4)
Set using ABILITY action.
Flag 38 holds current location of player

Flag 39 holds current top line of screen in the Spectrum version
of PAVW.

Flag 40 holds screen mode (range 0 to 3) set with MODE action.
Bit 1. suppresses the More... megsage
Bit 0. stops the screen being cleared before a DESC

Flag 41 holds line number for 8plit in the Spectrum version of
PAW.

Flag 42 holds prompt to use (a systenm message number - O selects
one of four randomly

Set by the PROMPT action.

60

Flag
Flag
Flag
Flag
Flag

Flag
Flag

Flag

Flag

Flag

Flag

Flag

Flag
Flag
Flag

43
44
45
46
47

48
49

50
51

52

53

54

55
56
57

Summary

holds the Preposition in the current logical sentence
holds the second Noun in the current logical sentence
holds the Adjective for the second Noun

holds the current pronoun {"IT" usually) Noun

holds the current pronoun ("IT" usually) Adjective

holds Timeout duration required

holds Timeout Control flags

Bit 7 - Set if timeout occurred last frame

Bit 6 - Set if data available for recall {(not of use to
writer)

Bit 5 - Set this to cause auto recall of input buffer on
timeout

Bit 2 - Set this so timeout can occur on ANYKEY

Bit 1 - Set this so timeout can occur on "More...

Bit O - Set this so timeout can occur at start of input
only

Set using TIME (as is flag 48), TIMEOUT tests Bit 7 of

this flag.

holds Objno. for DOALL loop. i.e. value following DOALL

holds last object referenced by GET/DROP/WEAR/WHATO etc.
This is the number of the currently referenced object as
printed in place of any underlines in text.

holds players strength (maximum weight of objects carried
and worn - initially 10)
Set with ABILITY action.

holds object print flags

Bit 7 - Set if any object printed as part of LISTOBJ or
LISTAT

Bit 6 - Set this to cause continuous object listing
i.e. LET 53 64 will make PAW list objects on the
same line forming a valid sentence.

holds the present location of the currently referenced
object

holds the weight of the currently referenced object

is 128 if the currently referenced object is a container.
is 128 if the currently referenced object is wearabdle

Flags 58 & 59 should be avoided as they will be used for any
expansion

Flag 60 to 255 are available for your own use.

61

Summary

locno+
locno+

0-255
0-255
0-255
0-255
flagno
flagno

The CondActs

;Ensure player at specific location

shigher location than specified
slower...

;sRandom possibility of success
;Players last input timed out

(Those marked § are type 4, t are type 3, ¥ are type 1)

Conditions:

AT locno
NOTAT locno
ATGT locno
ATLT locno
PRESENT objno
ABSENT objno
WORN objno
NOTWORN objno
CARRIED objno
NOTCARR objno
ISAT objno
ISNOTAT objno
ZERO flagno
NOTZERO flagno
EQ flagno
NOTEQ flagno
GT flagno
LT flagno
SAME flagno
NOTSAME flagno
ADJECT1 word
ADVERB word
PREP word
NOUN2 word
ADJECT2 word
CHANCE 0-99
TIMEOUT

QUIT

Actions

GET § objno
DROP § obdjno
WEAR § objno
REMOVE § objno
CREATE objno
DESTROY objno
SWAP objno
PLACE objno
PUTO locno+
PUTIN § objno
TAKEOUT § objno
DROPALL

AUTOG §

62

obJjno
locno+

locno
locno

AUTOD
AUTOW
AUTOR
AUTOP
AUTOT
COPYOO

COP OB DI COD O

COPYOF
COPYFO
WHATO

WEIGH

SET
CLEAR
PLUS
MINUS
LET
ADD
SUB
COPYFF
RANDOM
MOVE

GOTO
WEIGHT

ABILITY

MODE
PROMPT
TIME

PRINT
TURNS
SCORE
CLS
NEWLINE
MES
MESSAGE
SYSMESS

LISTOBJ
LISTAT
INVEN 1
DESC q

END

locno
locno
objno objno

objno flagno
flagno objno

objno flagno

flagno

flagno

flagno 0-255
flagno 0-255
flagno 0-255
flagnol flagno2
flagnol flagno?2
flagnot flagno2
flagno

flagno

locno

flagno

0-255 0-255
0-255

sysno

0-255 0-255

flagno

mesno
mesno
sysno

locno+

Summary

;Copy position of object to flag

;:Convert Nouni(Adjectivel) to
current object
;Weight of object is put in flag

;Add value to flag
;contents of flag! added to flag2

1Set to random number from O to 99
;Adjust contents of flag according
to the LS Verb and the Connection
section entry for location, that
the <contents specify. (allows
movement in PSIs)

1Weight of objects carried & worn
are put in flag
;Set conveyable obhjects and strength

;Prompt on input. O is random
;display contents of flag on screen
;message without a newline

;message with & newline
;system message without newline

;List objects at current location
;List objects at specified location

;Type 2,Exits table to restart game

63

Summary

DONE +

NOTDONE t

0K t

SAVE T

LOAD T

RAMSAVE

RAMLOAD flagno

ANYKEY

PAUSE 0-255 ;Delay program for n/50 of & second

PARSE ;Convert input string to valid LS

NEWTEXT ;Force the loss of remaining phrases

BELL

PROCESS procno ;Execute sub-process

DOALL locno+ ;Generate Noun(Adjective)t for each
object at Location locno.

RESET f locno sMove player and present objects,
reset others to start position -
used to chain games with LOAD

EXTERN 0-255 ;Call external program

Where:

locno. is a valid location number defined in LTX.
locno+ also allows the use of;-
" or 252 (not-created),

"WORN" or 253 (worn),
"CARRIED" or 254 {(carried) and
“"HERE" or 255 (current location of player)

mesno. is a valid message number defined in MTX.

sysno. is a valid system message number defined in STX.

flagno. is any flag (0 to 255).

procno. is a valid sub-process number.

word; is a word of the required type, which is present in the
vocabulary, or "_" which ensures no-word - not an anymatch as
nomal). -

64

© 1986 Gilsoft International Ltd.

Published by Gilsoft International Ltd.,
2 Park Crescent, Barry, South Glamogan CF6 8HD
Telephone Barry (0446) 732765

All rights reserved, unauthorised copying, hiring or lending strictly prohibited

	pag 00
	pag 01
	pag 02
	pag 03
	pag 04
	pag 05
	pag 06
	pag 07
	pag 08
	pag 09
	pag 10
	pag 11
	pag 12
	pag 13
	pag 14
	pag 15
	pag 16
	pag 17
	pag 18
	pag 19
	pag 20
	pag 21
	pag 22
	pag 23
	pag 24
	pag 25
	pag 26
	pag 27
	pag 28
	pag 29
	pag 30
	pag 31
	pag 32
	pag 33
	pag 34
	pag 35
	pag 36
	pag 37
	pag 38
	pag 39
	pag 40
	pag 41
	pag 42
	pag 43
	pag 44
	pag 45
	pag 46
	pag 47
	pag 48
	pag 49
	pag 50
	pag 51
	pag 52
	pag 53
	pag 54
	pag 55
	pag 56
	pag 57
	pag 58
	pag 59
	pag 60
	pag 61
	pag 62
	pag 63
	pag 64
	pag 65

