

The Professional Adventure Writer

An adventure writing system for CP/M computers.

(c) 1986/88 Gilsoft International Ltd.
Program: T.J.Gilberts, G.Yeandle and P.Wade
Graphicse: A.Williams
Manuals: T.J.Gilberts and G.Yeandle

All Rights reserved. No part of this publication may be copied,
loaned, hired or reproduced in any form whatsoever including
electronic retrieval systems without the prior written consent of
the authors and Gilsoft International Ltd.

The above notice does not apply to the 'run time' routines which
form & part of & completed adventure, which you are free to
distribute any way you wish in that form. All we would request is
that you credit the use of the Professional Adventure Writer
somewhere within the game.

Acknowledgement

Thanks to Jill for putting up with
the many hours I spent hammering
away at the keyboard.

Contents

Introduction
Getting Started
Concepts
Writing an adventure
Start typing
Playing the game
Objects
Process & Response
The Bird
The Dog
Do it yourself
End of the road
Appendix A:
EDIT: A simple Text Editor

User Registration

Page
Page

Page

Page

Page
Page
Page
Page
Page
Page
Page

Page

Page

Page

5
6
9
10
13
17
19
26
41

46

52 -

53

54
60

Contents

Introduction

Introduction

Welcome to the world of adventure writing...

The Professional Adventure Writer (or P.A.W. as it is more
commonly known) provides you with the facilities to produce high
quallty adventuros (in machine code) of equal or botter quality
than many commercially available.

PAW will provide you with the basic framework for writing a game,
but it is still up to you to provide an imaginative storyline and
original puzzles.

The manuals supplied with PAW cover all aspects of its use. This
manual provides a tutorial covering the construction of an
adventure and we would recommend you work your way through it and
its accompanying examples before attempting a game of your own.
The other manual provides a detailed breakdown of the entire
system and can be used as & reference guide while writing your
own games.

Good 1luck...

A great deal of time and effort has been put into ensuring PAW
deals with all conceivable situations in a logical and useful
manner. This has resulted in a complex program of some 60K in
size, and it is entirely possible that somewhere deep within the
code a few well hidden bugs remain. Indeed a well known quote
states that; "Testing only proves the presence of bugs, not their
absence”. If you should find a problem please tell us so that we
can correct it if necessary.

All due care has been exercised in the preparation of these
manuals and their accompanying programs. However the authors and
Gilsoft International Ltd assume no responsibility for errors,
omissions or suitability of their contents for any application.
Nor do we assume any liadbility whatsoever for damages resulting
from their use. This disclaimer does not affect your statutory
rights.

Getting Started

Getting Started

The CP/M version of PAVW consists of a Compiler and an
Interpreter. Adventures are created by entering all information
about the game into a text file known as a source file and then
using the Compiler to produce a database. The Interpreter then

uses the information in the database to provide the finished
adventure.

A limited amount of knowledge of CP/M is assumed as follows:-

a) You should understand the format of CP/M file names.
ie d:nnnnnnnn.ttt)

b) You ohould know how to display a directory of your files
eg DIR

c¢) You should know how to delete a file eg ERA OLDFILE.TXT

d) You should know how to rename a file.
eg REN NEWNAME.SCE=OLDNAME.SCE

e) You should know how to copy a whole disc to provide a backup.

f) You should know how to make a duplicate copy of a file eg to
make a copy of START.SCE called TICKET.SCE you could use PIP
TICKET.SCE=START.SCE

g) If you have more than one disc drive you should know how to
refer-to files on specific drives and how to copy files from
one drive to another eg PIP B:=A:TICKET.SCE

Before we go any further ensure you have made a backup copy of
the PAW disc and that you have put the original in a safe place.

It may be worth reading the READ.ME file on the release disc at
this point to find out about any additions and or corrections

since this manual was printed. This can be done using the CP/M
command TYPE:

TYPE READ.ME
Installing the Interpreter
Before you can use the Interpreter it needs to be installed. The
Interpreter needs to know, amongst other things, the number of

columns on your screen, the number of lines on your screen and

how to clear the screen. To install the Interpreter type:-
PAWINST PAWINT.COM

Your screen should now look something like this:-

Columns is set to 90

Lines is set to 31

Timeout is set to 4680

Clear screen is set to '1B451B48' (hex)
Pause is set to 17

Enter A to change Columns

Getting Started

to change Lines

to change Timeout

change Clear screen
to change Pause

or to exit

Choose A-F?

HEo Qw
d
o

Do not worry about the Timeout & Pause values for now as these
are for 'fine tuning'. Check that the settings for Columns,
Lines and Clear screen are right for your computer and if not
correct them. Note that the Clear screen code has to be entered
in hexadecimal and that the codes entered should clear the screen
and place the cursor at the top left hand corner of the ncreen.

Some example values are:-

Computer BBC with 780 PCwW8512 CPC464 CPC6128
(2nd processor) CP/M 3 CP/M 2 CP/M +
Screen mode MODE 3 24x80 off MODE 2 MODE 2
Columns 80 90 80 80
Lines 25 31 25 24
Timeout 5461 4680 1705 1705
Clear screen 'oc’ '1B451B48" ‘oc’ '1B451B48"
Pause 35 17 17 17

When you are satisfied that the values are correct for your
computer enter 'F' to exit and you will be asked "Do you want to
update the file on disc?”. Answer Y if you have made any changes.

Choosing your Text Editor

To create your adventure you will need a Text Editor or Word
Processor that can be used to produce 'Non-Document' files ie
CP/M text files without control codes. ED8O by Hisoft, Protext
or ¥Wordstar in non-document mode are suitable examples. If you
already have a suitable text editor then use it. If not you will
need to use the one that we provide which is very basic. If you
choose to use it then the instructions for installing it and
using it are contained in appendix A of this manual, you will
need to familiarise yourself with its use before proceeding.

Rote: Be careful that certain wordprocessors use unusual symbols
at the start of lines as control characters. eg The ‘'DOT
commands of Wordstar, and the '>' of Protext. The latter will
cause problems with one of the system messages (33) which is the
Marker used for the players input. Just put & space in front of
the >' or use a different character to prevent conflict.

A working disc

To get maximum use out of the PAVW system, we advise that you make
up a day to day working disc containing only those files which

Getting Started

are absolutely necessary, and any useful CP/M utilities. This is
especially important in single drive CP/M 2 systems, where multi
disec use is practically impossible. Our suggestions for various
systems are as follows: ’

Single drive CP/X 2.2 (e.g. Amstrad 464 with DD or Amstrad 664).

Format a disc with the systenm option, so that you can use CTRI C
to reset the disc system! Then copy STAT onto the disc. If you
are using your own text editor copy that on, otherwise copy the
installed EDIT.COM & EDIT.INS from the PAW disc. Finally copy the
following files from the PAW disc:

PAWCOMP.COM
PAWINT.COM (after installing it correctly!)
START.SCE

When you then start a game merely rename START.SCE to be your
game name. Thias will provide the maximum amount of space for your
Source and Database files. STAT can be done away with if you
don't want to know how much space is left on the disc!

Dual drive CP/M 2.2 or CP/M 3 (E.g. Acorn Z80, PCW 8512)

No problems here. Make a System disc up with any useful CP/M
utilities and copy the major PAW files onto it. It is a good idea
to leave about 50K free on this disc to accept your database
files. Thus leaving the second drive totally free for Source. You
will find the COMPILER faster if You compile the database to a
different drive from that which holds the source.

Single drive CP/M 3 systems (E.g. CPC 6128)

¥With the virtual disc facilities of CP/M 3 you can store all your
source and database files on a separate disc and then refer to it
as drive B. NB. do not try to compile the database onto a
different virtual disc to the source or you may end up with a
sore arm from swapping discs!

RANM disc systems (E.g. PC¥ 8000 and 9000 series.)

Make up a day to day system disc as with the CP/M 2.2 single
drive system, but with PIP as well. Then at the start of a
sesasion you merely copy all the files from this disc into RAM.
(E.g. on a PCW you would PIP M:=A:*.*) then change the disc in
drive A: to your Source disc. Make the RAM drive your current
drive and away you go. Do not be tempted to use the RAM drive to
hold your source, despite its speed it is volatile and the CEGB
give no guarantees!

Concepts

Concepts

It is probably a good idea at this stage to introduce some of the
more important concepts which PAW embodies in its design.

The Source File

This is a collection of tables which contains all the
information, in a human readable form, to define the adventure.
File START.SCE is an example of & source file and is a useful
starting point for an adventure.

The Compiler

PAWCOMP.COM is a program that checks the source file for errors
and converts it into a PAW database.

The Database

This contains the output from the compiler and is a machine
readable version of the Source File. It can thus be considered as
a compiled adventure. START.PDB is an exanmple of & database file.

The Interpreter

PAWINT.COM is the main part of PAW. It contains all the run time
routines needed by a finished adventure. Essentially it fetches
commands from the player and uses the information in the database
to decode and respond to those commands. ‘

Parser
Back to school for this bit:-

parae v.t. to classify a word or analyse a sentence in terms of
grammar. parsing n. (Minster English dictionary)

PAW features a fairly powerful parser to convert what the player
types when playing your adventure into a series of simplified
'Logical Sentences' (LS5's) to which you will have defined the
reoponses. The parser does this by extracting 'phrases' from the
input string one at a time and allowing the rest of PAVW to
interpret their meaning. Phrases are separated by any punctuation
mark and the conjugations 'AND' or 'THEN' - although you can
change this if required. When it runs out of phrases in the
current input string it will request another. A phrase consists
of at least a Verdb (a doing word!) and optionally two Nouns
(vords which name objects) possibly with associated Adjectives
(which describe objects), an adverb (which modifies the verb), a
preposition (shows the relation of one Noun with another word)
and finally a string enclosed in quotes which is used for speech
to other characters in the adventure.

Writing an adventure

Vriting an adventure

Now the fun starts...

Planning

Planning your game is very important if you want to create a
professional result. It is no use sitting at the machine and
typing away in fits and starts as you wait for inspiration! You
will merely entangle yourself in a maze of numbers and words,
with no recourse but to start from scratch anyway.

To illustrate the recommended approach to writing an adventure we
will consider the design and development of a simple game from
initial idea to final testing.

Getting an Idea

This is always the hardest part of creating anything! An original
storyline can provide a game with an interest which rescuing a
princess will probably not evoke in a modern adventurer.

Subjects'for adventures are all around in many day to day
actions, in exotic places around the world and out of this world!

If you decide to base a game on & book or film you have enjoyed,
and intend using it commercially, make sure you have obtained
permission from the original author or copyright owners.

For our sample we will use a simple problem which bescts a
prassenger on his/her way home:~

While standing at the bus stop the passenger's ticket blows away
in the breeze and is carried avay by a small bird into an
adjacent park. The computer will play the part of the passenger
who you must direct to find the ticket before the bus arrives.

Game design

Now you have the idea, it is worth drawing a rough sketch of the
area the game will take place within as we have done in diagram 1
(well actually our artist drew it...).

Note that any game design ought to be within a logically enclosed
area or the player will wonder why they can't go in a direction
when nothing appears to bar the way.

An adventure consists of a number of 'discrete’ that is separate,

‘locations’ or places the player can visit. You must now decide
which areas can become a location and number then individually.

10

¥riting an adventure

Diagram 1

il

LLLALE ARSI

e N
|\\>l .L\fru

. e
I

- e

M,

¥riting an adventure

Try to make the scale consistent or logical (unless the game is
illogical by intent!) as a single step to an airport earlier
described as 10 miles away doesn't help the impression of
realism. You can introduce a method of transport such as a taxi
etc., if needed. Now location O is always reserved as a title
screen for & game, and we want location 1 for a special use
later, so we number the locations from 2 upwards.

For our example we have chosen 7 locations as follows:-

The Bus Stop.

On the Grass.

By the Bench.

The Bandstand.

The Ornamental Pond.
By the Tree.

Up the Tree!

DN owvauN

To clarify the layout and to work out the possible movements,
diagram 2 is a block diagram showing a stylized map of the game.

Diagram 2
Up Tree Bandstand
8 5
By Tree By Bench Bus Stop
7 4 2
By Pond On Grass North
6 3

Now we can start to write the textual description of each
location. Try not to make them a dry and uninteresting monologue
on the state of the nation. Short and snappy is just as effective
in creating an atmesphere if a little imagination is brought to
bear. Remember to stick to one form of address ('I' or 'You'
usually) or the player will suffer a serious identity crisis.
Note that if you use 'You' as a form of address you will need to
change the system messages - see the technical guide for details.

12

Start Typing

Start Typing

We are going to call this adventure TUTORIAL so we need to create
a source file called TUTORIAL.SCE. As a starting point make a
copy of START.SCE called TUTORIAL.SCE. This can be done uging the
PIP program under CP/M. e.g. PIP TUTORIAL.SCE=START.SCE. Now
edit TUTORIAL.SCE, using either your own text editor or the one
we supply. In the cnse of EDIT you would type EDIT TUTORIAL.SCE.

The source file consists of a number of sections which describe
the adventure. Let's take a quick look at the source file to see
what's there. The first line is a comment, which tells us that
this is a START source file and the date it was last altered.
Any line which starts with a semi-colon is a comment. Comments
are totally ignored by the compiler and thus take up no room in
the database file when it is produced. Copious comments will
help you remember what is going on in your game.

The CONTROL section begins with a line which starts with '/CTL'
and gives some control information for the compiler.

The VOCABULARY section begina with a line which starts with
'/VOC' and defines all the words which PAW will 'understand' eg
QuUIT.

The SYSTEM MESSAGES section begins with a line which starts with
'/STX' and defines the messages that the system can issue eg
"What next?"

The MESSAGE TEXTS section begins with & line which starts with
'/MTX’' and defines the messages actually nz2eded by the adventure
eg "It's a cheese sandwich!"

The OBJECT TEXTS section begins with & line which starts with
'/O0TX' and defines the descriptions of all the objects in the
adventure eg "A rotten egg".

The LOCATION TEXTS section begins with a line which starts with
'/LTX' and defines the descriptions to be used for every location
in the adventure eg "You are in a prison cell. There is no way
out."

The CONNECTIONS section begins with a line which starts with
'/CON' and defines the connections between every location in the
adventure.

The OBJECT DEFINITION section begins with a line which starts
with '/OBJ' and defines every object in the adventure eg Object O
starts the adventure being carried and has a weight of 1 unit, it
is not a container and cannot be worn etc.

The PROCESS TABLE section begins with a line which starts with
'/PRO 0' and provides the main game control. eg when the player

13

Start Typing

types in LOOK, action DESC is done to describe the current
location.

Getting back to our tutorial, firstly change the comment in line
{ to read:-

sTUTORIAL source file DD/MM/YY

Where DD/MM/YY should be replaced with the current Day, Month and
Year. It is a good idea to keep track of file versions like this,
80 you can always tell if you are working on the latest version.

While we are at the top of the file, line 3 tells the Compiler to
write the compiled database to drive A. You can change this if
you prefer a different drive.

Now we are going to concentrate on the locations. Find the line
which starts with /LTX and you will see that a description for
location O already exists. The connections section, a few lines
lower, ulso has an entry for location O but this is a null entry.

Change the location and connections sections so that they read as
follows:~

JLTX ;Location Texts
/0 ;Intro
The Ticket

While standing on the bus stop my bus ticket has been blown
away, can you help me to find it?

/1

I'm inside the bag!

/2

I'm standing by a bus stop, on a road which runs North to

South. To the West a park gate set in iron railings stands
open.

/3

The grass on which I stand is neatly trimmed. To the North is
a path and bench while to the West is an ornamental pond.

/4

I am on a gravel path running East to West, by a park bench,
to the South is a grassy area while to the North I can see a
bandstand.

/5

I am standing on the bandstand which appears to be made of
ornate cast iron painted white. To the South is a path.

/6

The sun glitters on the surface of the ornamental pond, whose
waters ripple in the gentle breeze. A path runs North towards
a large tree, while to the East is a grassy area,

14

Start Typing

/1

The path curves South and East here beside a large tree.

/8

I am sitting on a branch in a broad leaved tree, the park is
spread out before me, to the East I can see the bus stop
through the gate in the railings.

/CON ;Connectionn

/0 ;Start of game
N 2
/1 ;In bag
/2 ;Bus stop
W 4
/3 s By bench
N 4
W 6
NW 7
/4 ;Path
N 5
E 2
S 3
SW 6
W 7
/5 ;Bandstand
S 4
SW 7
/6 sPond
N 7
NE 4
E 3
/7 ;By tree
U 8
NE 5
E 4
SE 3
S 6
/8 ;Up the tree

Points to note (lots of them):-

a) The text will be formatted by the Interpreter when the game is
played to ensure that the text fits the screen width
correctly without breaking words over lines.

b) Do not worry about location 1 for now.

c) The texts should not include any control codes. Any character
with n valuo lens than decimnl 32 1o considered a control code
including TABS.

d) Ensure that there are no spaces on the end of any of the
lines. The description of location O includes 4 null text
lines. These lines must not include any spaces.

15

Start Typing

e) The compiler joins consecutive non-null text lines with a
space.

f) The compiler converts null text lines into carriage returns.

g) For a 40 column screen the introduction would therefore be
printed as:-

The Ticket

While standing on the bus stop my bus
ticket has been blown away, can you help
me to find it?

h) The connections entry for location 5 (for example) states that
if the player is at location S he can type in 'S' (or SOUTH)
to get to location 4 or 'SW' to get to location 7.

i) The words after the semi-colons are comments.

j) BEach direction in the connections section eg 'SW' must be
defined as a movement word in the vocabulary. :

k) For every location text in the location section there must be
a corresponding entry in the connections section.

1) We have included a way of getting from location O (the
introduction) to location 2. There is a better way but this
will do for now.

Check these entries thoroughly against diagrams 1 & 2 until you
are sure they are correct then save TUTORIAL.SCE, and exit back
to CP/M so that we can try the compiler. With EDIT our simple
Text Editor CTRL & K will allow you to save the file and then
return you to CP/M.

Now let's try out the Compiler. Assuming that PAWCOMP.COM and
TUTORIAL.SCE are on the default drive you need to type:

PAWCOMP TUTORIAL

to compile the adventure as it stands at the moment. We have not
included any deliberate errors so you should eventually get a
message saying "Compilation ends OK" and a file called
TUTORIAL.PDB. If you get any errors or warnings you will have to
correct them and recompile the source file. Note that you can
redirect the compilation listing to a disc file if you prefer by
specifying PAWCOMP TUTORIAL P which will create TUTORIAL.PRN on
the default drive or PAWCOMP TUTORIAL Pd which will create
d:TUTORIAL.PRN. If you get really stuck with errors in the
source file then the file TICKET.SCE may help you but note that
this file contains the whole tutorial adventure.

Rote. An extremely common mistake, which can cause apparently
unfathomable problems, is inserting a blank line! Particularily
a blank line between the end of one section of the source file
and the header of the next. i.e. above the /VoC, /PRO etc.,
lines. Or a blank line anywhere in the /CTL section which PAW:
will get very upset about!

16

Playing the Game

Playing the Game

Now we can have our first use of the Interpreter (and see if you
installed it properly!). Assuming PAWINT.COM & TUTORIAL.PDB are
on the default drive you need to type:

PAWINT TUTORIAL

The screen should be clcared and at the top it =should say
something like:-

The Ticket

While standing on the bus stop my bus ticket has been
blown away, can you help me to find it?

Vhat now?
>

If not you will have to reinstall the Interpreter and try again.
Assuming your Interpreter is installed correctly we can continue.

The input line is used to enter commands for PAVW to interpret
into things to do - according to the information you have entered
when writing your game. So far we have only told it where to
take us when certain directions are entered. 3o try starting the
game properly by typing NORTH or N.

The screen will clear and the description for location 2 will
appear - if it doesn't you probably have the entry in the
connections section wrong. Don't worry, you can leave the
Interpreter by typing QUIT (which is a command PAW knows to start
with) and replying Y; You do want to quit and N; you don't want
to try again; then you can correct the entry, recompile and try
again.

We need to mention diagnostics now. If you press RETURN/ENTER
(whichever you have on your keyboard) without typing anything in
first, the Interpreter will be switched into diagnostics mode and
you will see a line something like:-

Flag 38=2 ?

which shows you the value of flag 38. There are two things to be
learnt here. Firstly, pressing RETURN/ENTER again (without
typing anything in first) will switch the Interpreter out of
diagnostics mode. Secondly, that flag 38 always contains the
value of the current location, ie 2 in the example above.

You can now try moving between your locations, testing the
possible noves (make a note of any which are wrong so that you
can correct them).

Playing the Game

You might also like to try some of the other commands which PAW
knows, e.g. R or REDESCRIBE will display the location description
again - which 1is useful if a lot of text has been output and the
description lost. I or INVENTORY will list the 'objects' you are

carrying, you will be carrying one object to start with but will
be able to do nothing with it.

You are probably dying to see the parser in action by now (why
not?) so if you work your way back to the bus stop and enter the
following line you will get a flying visit round the game!

GO WEST THEN NORTH THEN SW THEN UP AND DOWN THEN SOUTH
AND EAST THEN NORTH THEN EAST. INVENTORY

By the way W.N.SW.U.D.S.E.N.E.I will have the same effect but
doesn't look half as impressive...

Right back to the boring bit, QUIT from the game as shown
previously so that we can deal with the next chapter in this
saga.

18

Objects

Objects

Objects are anything which the player can manipulate within the
game, for example, An apple which they could eat, a key which
they could use to unlock a door, or a rucksack to contain the key
and the apple!

In our simple game we will have the following objects (not all of
which have a function in the final game).

Object O A 1lit torch.
Object 1 A bag.

Object 2 A sandwich.
Object 3 An apple.
Object 4 A ticket.
Object § A lead.

Object 6 An anorak.
Object 7 An unlit torch.

Note that the torch is in fact two separate objects which we
could swap over if the player turned it on or off.

Start editing TUTORIAL.SCE again and find the line which starts
with /OTX. You will see that a description for object O already
exists. Change the object text section so that it reads as
follows: -

/0TX ;Object Texts
/0
A 1it torch.

A sandwich.
/3

An apple.
/4

A ticket.

An anorak.

/7
An unlit torch.

Points to note:-

a) Ensure that there are no spaces on the end of any of the
lines.

19

Objects

Now find the line which starts with /OBJ ie the Object definition
section and change it to read as follows:-

/OBI ;0bject Definitions

;obj starts weight cont- wear/ noun andjective
;jnum at ainer remove
/0 1 TORCH LIT
/2 3 Y - BAG _
/2 CARRIED 1 _ ~ SANDWIC —
/3 CARRIED 1 APPLE
/4 8 1 B _ TICKET
/5 3 1 _ - LEAD ~
/6 WORN 3 B Y ANORAK —)
/1 CARRIED 1 : - TORCH UNLIT
Points to note:-
a) All the characters are underlines.

b) You can use TAB's to separate the columns in the object
definition section (if your text editor will allow you).

c¢) There must be .he same number of entries in the object
definition section as in the object text section.

¥hat on earth does all that mean I hear you ask. Well the first
column contains the object number (and they must be defined in
the correct order). The second column states where the object is
at the beginning of the game; at the start of the game object 2
is carried by the player, object 6 is worn by the player, object
5 is at location 3 and object O is nowhere, ie does not yet exist
within the game. The third column defines the object's weight;
objects 1 and 6 are three times as heavy as the other objects.
The next column specifies which objects are containers, ie
whether they can contain other objects. We have decided that
only the bag is to be a container, you have to imagine that the
anorak has no pockets (well ours hasn't anyway). The fifth
column determines whether the object can be worn and removed - in
our game only the anorak can be worn and removed. Note that any
object which starts the game worn must also be marked with a Y in
the fifth cclumn. The next column (6th) is used to specify the
noun to be associated with each object. Note that only the first
5 characters of each word are significant so that SANDW, SANDWI,
SANDWIC and SANDWICH would all mean the same thing. The final
column is used to specify the adjective to be associated with an

object if a noun alone is insufficient to distinguish an
individual object.

This is an excellent time to show you some compiler errors so

save TUTORIAL.SCE and try to compile it again. (PAWCOMP TUTORIAL
if you've forgotten).

When the compiler finds an error, the line number of the source-
file and the contents of the line are printed (when appropriate)

20

Objects

then the error number and error reason eg;

344 /1 2 3 Y _ BAG
*** ERROR 5 - BAG is not in Vocabulary

We are expecting the compiler to find 8 errors so the compilation
should end with the line:-

#*% Compilation endn with 8 ERRORS

The 8 errors have been found because we have used words eg BAG,
which have not been defined in the vocabulary section. Guess
which section we are going to look at next!

Yocabulary

The vocabulary is a list of all the words which PAW is able to
recognize in any input the player types in during the game. Thus
any words which aren’'t in this section will have no effect at
all! START.SCE contains about 70 common English words which will
be required for most adventures.

Each entry for a word consists of up to five letters which will
either be a complete word e.g. NORTH or the first five letters of
a longer word e.g. ASCEN(D), a word value and a word type (e.g.
Noun, Verb etec).

The use of only five letters to store a word reduces the amount
of memory required to store the entire vocadbulary, the amount of
typing the player must do and makes PAW faster at looking up
words when required. Five letters is also more than adequate to
differentiate the majority of important words in the English
language from each other.

Start editing TUTORIAL.SCE again and find the vocabulary section
- /VOC. You should be able to see that each entry consists of a
word followed by a word value and a word type eg

N 2 noun

PA¥W understands 7 types of words ie noun
verd
adjective
adverb
preposition
pronoun
and conjugation

If you look at the first part of the vocabulary section you
should be able to find all the directions that we used in the
connections section (eg N & SW). Note that any words with the
same word value and the same word type are regarded as synonyms,
ie they mean the same thing eg N & NORTH are synonyms. It does

21

Objects

not matter which order the words are defined in the vocabulary
section. We have chosen to group all the adverbs together and
all the adjectives together etc..

We need to increase the number of Nouns by inserting a word for
each of our objects. Now the first free number appears to be 15,
but Noun values less than 50 have special meanings thus;

Nouns less than 50 are Proper Nouns, for example people's names
or places. More specifically for PAW they are Nouns which will
not affect the subject of 'it'. Take the sentence:-

GET THE SWORD AND CLEAN IT

IT (a word known as a pronoun) refers to the SWORD obviously. PAVW
will (as long as SWORD is a Noun in the vocabulary with a value
greater than 49) know this, and assuming you have dealt with the
possibility of cloaning the sword, nllow you to do no. But take
the following sentence:-

GET THE SWORD AND KILL THE ORC WITH IT THEN DROP IT.

Normally PAV assumes 'it' to be the last used Noun but as long as
ORC is a Noun in the vocabulary with a word value less than 50,
PAW will remember 'it' as being the sword, and carry out the
action correctly. This feature is noted in the comments along
with mention of word values less than 20. These are Nouns, which
if PAVW cannot find a Verbd in a ‘Phrase' containing one, will
convert temporarily (i.e. it does not change the vocabulary) into
a8 Verb. The major use of this is for things like NORTH which may
be typed on their own implying GO NORTH, which in normal English
is invalid but is common when playing adventures.

Finally verbs and nouns less than 14 are assumed to be movement
words - any word which is a direction. This merely determines the
message which will be printed if PAW cannot do anything with the
phrase it has found (i.e. it determines if "I can't" or "I can't
€0 in that direction” is displayed). Note that this tag of 'less
than 14 is a movement' applies to both Verbs and conversion
Nouns.

Since all our objects are 'its
greater than 49 as follows:-

we must give them word values

TORCH 50 noun
BAG 51 noun
SANDW(ICH) 52 noun
APPLE 53 noun
BUS 54 noun
TICKE(T) 54 noun
LEAD 55 noun
ANORA(K) 56 noun

22

Objects

Note that there are two words with value 54. This makes BUS and
TICKET synonymous so if the player types GET BUS TICKET or GET
TICKET, PAW will know they mean the same thing.

We also need some words to describe the difference between our
two torches to PAW. The words which describe a Noun are called
Adjectives. We need two extra adjectives LIT and UNLIT as
follown:-

LIT 10 adjective
UNLIT i1 adjective
All word values from 1 to 254 are available for each type of word

and there is no limitation on the number of words with the same
word value (synonyms), so the vocabulary can become quite large
if you want.

Alter the vocabulary section to ineclude our extra & nouna nnd
nd jectiven, aave TUTORIAL.GCE and compile it agnin. Correct any
errors and recompile until there are no errors or warnings.

Play it again...?

OKAY let's try the Interpreter again (PAWINT TUTORIAL) and type
NORTH to get to the Bus Stop. Firstly a bit more about
diagnostics (you can enter and leave diagnostics mode by giving a
null input ie just by pressing RETURN). Do that now... (please')

PAW contains 256 of what are known as 'flags'. Each flag can be
used to contain a number from O to 255 and is used to indicate
(or flag!) the state of some part of the game. e.g. You could
decide that flag 11 when set to | meant that the park gate was
closed, and when set to O meant it was open. We will see examples
of the way flags can be set and used in the next section.

PAW has set aside several of the flags to indicate specific
things (flags 0 to 10 and 29 to 59 actually). The value displayed
is the contents of flag 38 which PAW knows is your current
location eg

Flag 38= 2 ?
You can look at the values of other flags by typing their number
before pressing RETURN again. Try 100 to look at flag 100, which
will display:

Flag 100= o
A very powerful feature allows You to set the value of a flag by
putting = in front of the number. Try =10 RETURN and the line
should be redisplayed as:

Flag 100= 10 ?

23

Objects

Flag 100 does nothing in our game and its value is unimportant,
but if you decide to practice on your own do not change the
values of any other flags for the moment or you may get some
funny effects if you happen on a flag which is important. Return
to the input line when you have finished (press RETURN) so that
we can see what else PAW can do.

Weo ohould now bn abln to manipulnte Lhe objoctn in thao gnmo. At
the moment the bag will be at the buus stop with us. We will be
carrying the sandwich, apple, unlit torch and wearing the anorak.

Use the diagnostics to look nt the value in flag 1. This has the
value 3, which ia the number of objects carriced but not worn.
Return to the input line and type GET BAG. PAW will print the
message "I now have the bag.", which is known as auto-reporting
(PAW automatically reports any action it has carried out). This
command has caused the current position of the bag to be changed
from location 2 (the bus stop) to 'location' 254 (carried). Note
that no change has occurred to the object definition section of
the database, only to a copy of it which was made when the game
started. If you look at the value of flag 1 again (notice how the
flag you looked at last is displayed when you reselect
diagnost;cs) you should find it has been increased to 4.

Now try REMOVE ANORAK and the report "I can't remove the anorak,
my hands are full"” will be printed. This is because PAVW
initially (by default in other words) allows the player to carry
only four objects at any one time. This situation must prevent
the player from taking off clothing etc (actually removing is
changing an objects position from location 253 to location 254!)
Try DROP BAG and then REMOVE ANORAK again - this time you should
be able to do so. Look again at flag 1 and you should discover it
is still four - this is because removing the anorak has increased
the number of things you have in your ‘'hands’.

Try the following and see if you can work out why they do what
they do:

GET BAG
REMOVE ANORAK
WEAR ANORAK
GET APPLE

GET TICKET

Notice that all except the last report actually mentioned the
objects by name. This is because they were in plain sight and
thus the player would know they existed. But to a player who did
not know the game, the ticket has not yet been found and to
mention it by name would imply that it existed or that there was

24

Objects

only one in the whole game thus giving a clue!

If you try to put anything in the bag you will discover that PAW
drops that object instead. This is because we haven't yet told
PAW what can be put in the bag only that it is a container. The
next chapter deals with this subject.

Finally we will find a 'bug' in our game; type GET GATE which
will vrensull in "There tan't one of those here™. 1L snhouldn't nay
that because the description says there is a gate here!

The problem arises because although we told PAW about the apple
the sandwich, the torch and nao on, we didn't tell it about the
gate. If you use GET (or DROP,WEAR and REMOVE) with any word
which is not in the vocabulary then PAW assumes it is an object
which is 'not here’. Of course once the word is in the
vocabulary, PAW will know it isn't an object (if there is no
entry for the word in the object definition section) and report
"I can't do that.”, which is correct.

S0 edit TUTORIAL.SCE and insert the following vocabulary
entries:-

GATE 57 noun
RAILI(NGS) 58 noun
GRASS 59 noun
PATH 60 noun
BENCH 61 noun
POND 62 noun
BANDS(TAND) 63 noun
IRON 63 noun
TREE 64 noun
BRANC(H) 64 noun
LEAF 64 noun

Notice how all the ways the player can refer to the tree are
catered for. We have no intention of allowing the manipulation of
leaves or the branch, but if you did you would need to give them
separate word values - this is an important design consideration.

You might like to use the Interpreter again to ensure that
GET GATE does indeed produce the correct response - don't forget
to re-compile TUTORIAL.SCE if you do, or the 'bug’ will still be
there! This arises of course because the database file reflects
the state of TUTORIAL.SCE the last time it was compiled.

We have now dealt with; creating locations and connecting them
together, creating and describing objects, assigning them a word
from the vocabulary, a starting point in the game, a relative
weight, flagging if they are wearable (and removable) and if they
are & container. The next chapter goes on to create problems and
characters to make the game world & more interesting place by
allowing the player to do things!

25

Process & Response
Process & Response

We now come to the section of PAW which allows the problems and
characters in the game to be created.

The Response table

The response table is a special form of what PAW terms a process
table. In fact the response table is process table O. When we
Say response table we mean process table O. A process table can
be thought of as a simple sequential (it does each command in
turn) programming language, the commands which are .carried out
are called ‘CondActs’ becnuno thoy can be dividod mainly into two
groups; Conditions and Actions.

Barlier we mentioned that the parser in PAW breaks sentences down
into phrases, which are then organized into what is known as a LS
(logical sentence). In the case of directions like NORTH (which
are LS's on their own) it uses the connections section to
discover where (if at all) it should move the player to. Before
it does that however it carries out a check against the response
table to see if that table contains an entry which can deal with

the LS, i.e. give a response to part of/entire command the player
originally typed.

Every possible phrase the player types and therefore every LS
that your game will respond to, will have a corresponding entry
in the response table, except for most movements which you set in
the connections section.

The most important part of a LS is the Verb, this shows the
purpose of the L5, next most important is the first Noun which
shows the subject of the LS; e.g. GET APPLE, GET is the purpose
and APPLE is the subject.

Look at TUTORIAL.SCE and find the start of the response table.
It starts with the line:-

/PRO O...

For the moment ignore the other entries and consider the first
entry only:

I _ INVEN
the two words "I" & " " indicate the Verb and Noun respectively
of the LS that this entry can deal with. Now I is a conversion
noun (as we saw in the section on vocabulary) which means if it
is the only word the player types in a phrase, it will become the
Verb for the LS. The underline (_) indicates that the Noun is not
important in this entry. What this means in simple terms is that
if the player types I on its own PAW will match it up with the

26

Process & Response

first entry in the response table and carry out that entry as
described next. In order to carry out the entry, PAW will
execute each of the condacts (commands) in the 1list which
follows. Now the first entry contains only one condact;

INVEN is an action (the act part of the word condact!). It is an
action because it carries out the act of listing the objects the
player is carrying and wearing on the screen, you do not need to
worry how INVEN does this it just does.

¥hen you typed I (or INVENTORY which is synonymous remember)
during testing the game, it was this entry in response that
cnunod nomething to happen bocause a logical sentence of "I "
was created by the parser, which PAW then found matched the first
entry in the response table.

INVEN once it has listed any objects you are carrying, instructs
PAW it has 'done’ something, when PAW discovers this it asks the
parser for another LS, which the parser provides by decoding the
next phrase in the players input, PAW gets this LS and checks it
against the entries in response and so on. This 'loop' is shown
in diagram 3 in the form of a flowchart which you should follow
from the box marked 'start'. The loop is slightly more complex
than the diagram might lead you to believe and a complete one is
given in the technical guide, but diagram 3 will do for now.

We advise you reread the above paragraphs and study the diagram
until you are happy with the way PAW operates on LS's before
proceeding.

Let's consider the second entry in response:
GET I INVEN

as you might have worked out this entry deals with the phrase
TAKE INVENTORY (GET is a synonym of TAKE, I is & synonym of
INVENTORY) this deals with another way the player might request a
list of the objects he has with him.

We will skip the next few entries and move onto:

QUIT _ QUIT
TURNS
END

Now, QUIT is a Verdb in the vocabulary, so, as the minimum valid
phrase is a Verb, if QUIT is typed on its own by the player then
the parser will generate a LS of "QUIT ", on searching through
the response table PAW will find the above entry and start to
carry out the condacts which follow;

27

Process & Responss

(start)

Diagram 3
Get Input
from
player
Look for ++... Parser used here.
valid
phrase
No
Found?
Yes
Create
Logical
Sentence
Search +ees. For entry
Response to match
Table the LS. .
Yes No .
Found? .
Search
Connection
Table
Carry out
CondActs
until DONE No
Yes
Move to
new
location

28

Process & Response

QUIT is a condition, (the cond part of the word condact), do not
confuse the Verb QUIT in the vocabulary with the condition QUIT,
if you were to make STOP a synonym of QUIT and then delete the
word QUIT from the vocabulary then the player would have to type
STOP to end the game, but the condition QUIT would still be
carried out i.e. the entry would then read:

STOP QUIT
TURNS
END

A condition merely decides if PAW should carry out the next
condact in the list. QUIT determines if the next condact should
be carried out by asking the player "Are you sure?". If they
reply "NO" then QUIT tells PAW it has 'done’ something which
causes PAW to go and get another LS (i.e. it stops the QUIT) this
is slightly different to the normal way a condition works as you
will see later. If the player types "YES" then QUIT does nothing
and allows PAW to look at the next condact in gsequence which is
TURNS.

TURNS is an action, which prints "You have taken x turn(s)."
on the screen where x is the number of phrases that PAW has
carried out since the player started the game. Despite the fact
it has done something it does not tell PAW to stop looking at
condacts which proceeds to look at the next condact END

END is a special action, which prints "Would you like another
g0?" on the screen. If the player types "YES" then END will cause
the game to be restarted with all objects restored to their
required position and so on. Otherwise END returns you to CP/HM.

Note that you should always have an END action somewhere in the
game (if you should happen to remove the QUIT entry that is) or
you may not be able to return to CP/M very easily.

The other entries which are present in the response table deal
with a number of other standard commands which the player of an
adventure will usually need. The condacts used in the other
entries are discussed below. You may be wondering why these
entries are in the table and not part of PAW if they are needed
in every game. Well apart from the fact it is easier to make them
a table entry, your game might not need them and as they are a
table entry they can be deleted.

DESC is an action, used by the "R _" entry in the table which
causes PAW to abandon scanning the response table and reDESCribe
the current location of the player.

SAVE and LOAD are two actions which allow the current state of
the game to be saved and reloaded from disc, the current game
position includes every piece of information needed to restore
the game after a LOAD to exactly the same position it was before

29

Process & Response

the SAVE and includes the values of flags, position of objects
plus sundry other information. Again do not confuse the Verbds
SAVE and LOAD in vocabulary with the actions SAVE and LOAD. You
could equally as well use STORE and RECAL(L) as your vocabulary
Verbs dbut they would still use the SAVE and LOAD actions in the
response table. Note that both SAVE and LOAD effectively do a
DESC action when they have finished which means any condacts
which follow will be ignored and that they also cause any further
phrases in a players input to be ignored.

BAMSAVE and RAMLOAD are two actions similar to SAVE and LOAD,
except that they use a 'buffer' (area of free memory) to store
the game position. Only one position can be stored and as it is
stored in memory it will be lost if the computer is turned off,
this should be made clear to the player. The number after
RAMLOAD is a parameter and tells the condact how many of the
flags to restore from the previous RAMSAVE, this allows scores
etc to be maintained even if the player 'cheats’ by using RAMSAVE
and RAMLOAD in & difficult part of the game. They are both
followed by a DESC action as unlike SAVE and LOAD they just
continue onto the next condact. Note that diagnostics are not
available’ following a RAMSAVE.

If PAW runs out of condacts in a list without being told it has
DONE something it will 'drop off' the end and realizing this will
continue to search response for another matching LS. We also said
that QUIT was a bit different to normal conditions, well for a
start it is the only condition which asks the player for
information and secondly it tells PAW something has been done if
the player replies "NO" (they don’'t want to abandon the game)
which causes PAW to get a new LS. A normal condition if it
'failed' would merely cause PAW to continue searching the
response table for another entry matching the LS.

The other condacts which are used will be considered now in
relation to the entries they are part of. To simplify our
explanations we can consider the position of an object to be one
of four places;

HERE: The current location of the player (the value stored in
flag 38 if you remember).

CARRIED: ‘'location' 254, the imaginary location which is where
all objects the player is carrying are stored.

WORN: 'location' 253, the imaginary location which is where
all objects the player is wearing are stored.

NOTHERE: Anywhere else! This may also include 'location' 252
which is the imaginary location where any objects which
do not yet 'exist' within the game are stored.

Take the following two entries in the response table:

30

Process & Response

GET ALL DOALL HERE
GET _ AUTOG
DONE

these two entries allow the player to GET an object. GETting an
object involves changing its location from HERE to CARRIED.

Ignoring the GET ALL for a moment let us look at the GET _ entry,
as we said earlier underline means 'any word' so no matter what
Noun the player types in, in the phrase containing the GET the
GET entry will match (this is called triggering the entry).
Take the phrase GET THE APPLE; THE will be ignored because it is
not in PAW's vocabulary, so the LS will be "GET APPLE", this will
‘trigger' the GET _ entry resulting in PAW looking at condact;

AUTOG is an action which AUTOmatically Gets the object specified
by the Noun. This is where the object definition section comes
into effect, AUTOG looks through the object definition section
for an entry which matches the Noun in the LS, when it finds one
(APPLE in the example) it then knows the number of the object it
refers to (the apple is object 3), it then ensures that the
current location of that object number is HERE and if so changes
it to CARRIED and prints the message "I now have the _" where
the underline is replaced with the description of the current
object. i.e. the one AUTOG just looked up. If it does not
succeed in finding an entry then there are five possibilities;

1/ The player has tried to get an object which they are already
carrying or wearing in which case "I already have the _." is
displayed.

2/ The player has tried to get an object which is NOTHERE in
which case "There isn't one of those here." is displayed.

3/ The player has tried to get something which is not an object
but does have a word in the vocabulary (e.g. GATE in the
demo game) this results in "I can't do that.".

4/ The player has used a word which is not in the vocabulary
which causes the parser to create a LS of "GET " which
triggers our GET entry anyway. AUTOG assumes this to be a
Noun describing an object (which may or may not exist) and
displays "There isn't one of those here.”.

5/ The player is unable to carry any more objects or this
object would cause the weight limit to be exceeded in which
case & suitable message is displayed.

If AUTOG succeeds then PAW looks at the next condact DONE;

DONE merely tells PAW that this entry is finished and it should

31

Process & Reaponse

g0 and get another LS.

Next we will look at the GET ALL entry, you may have guessed what
this does (it attempts to GET all objects at the current
location), so we shall explain the mechanism;

Should the player type the phrase GET ALL, the parser will create
a logical sentence of "GET ALL", which will mateh the entry and
cause PAW to look at the DOALL action;

DOALL is an action which is followed by a parameter which gives a
location number to use. DOALL looks through the current location
list for each object looking for entries that are at the same
location as the parameter , when it finds one it looks in the
object definition section to find the vocabulary word which
describes that object number, this is placed in the current LS
(thus replacing the Noun ALL), a flag is set to indicate that
DOALL is active and the rest of response is scanned by PAW for an
entry which matches the newly modified LS. fThis will be the
GET entry discussed earlier, which will GET that object. Once
this has been done PAW will discover that DOALL is active and g0
back to the GET ALL entry (actually it goes direct to the DOALL
action) and allows DOALL to look for another object which
generates a new LS and so on for all objects at the specified
location. When DOALL runs out of objects it resets the flag to
show it is not active and tells PAW to get a new LS.

This may seem a rather roundabout way to approach this task, but
if you examine the very similar DROP,WEAR and REMOVE entries you
will see that the same mechanism is used to create all four
commands. AUTOD, AUTOVW and AUTOR work in a very similar way to
AUTOG while DOALL merely uses CARRIED as the parameter for DROP
and WEAR (i.e. DOALL searches all the CARRIED objects when you
try to DROP or WEAR ALL!) and WORN when you try to REMOVE ALL.

If the above seemed a bit heavy going don't worry about it for
now as DOALL is one of the two most complex condacts in PAVW and
hopefully the penny will drop as we continue. At this point you
might like to use the Interpreter to try out the 'all’ commands
which may make the mechanism clearer.

Messages

Before we continue with the response table we will insert some
entries in the messages section which will be needed. So edit
TUTORIAL.SCE again and find the messages section (MTX not STX).

Messages should be a breath of fresh air after that discussion of
the response table, the purpose of messages is to contain all the
text which will be displayed to describe what is happening in the
game to the player, excluding the messages that PAW itself
displays (like "I can't do that." etc).

32

Process & Response

We are going to deal with the player wanting to examine things in
the game, e.g. EXAMINE APPLE. Now examining an object merely
requires the writer to provide a message which gives more
information about the specified object, so in the case of the
apple we could say "The apple is crisp and green.".

Change the message text section so that it reads as follows:-

/MTX ;Message Texts

/0

The apple is crisp and green.

/1

It's a cheese and pickle sandwich.
/2

The ticket has "City Bus Company" printed on it.

/3

The bench is firmly screwed to a concrete base.

; - - - - - - - -
We are going to deal with only four items in the demo game but in
a large game you would usually provide detail for most things,
even if they serve no purpose it provides a touch of realism
which always makes the player feel involved.

Now back to the response table. Let's take the apple first; the
phrase which the player will type will be EXAMINE THE APPLE (or
EXAMI APPLE if they are lazy!) producing a LS of "EXAMI APPLE".
So we need to insert an entry with these two words.

Now we must only allow the player to examine the apple if it is
actually HERE, CARRIED or WORN (most normal people have a
distinct disability at looking round corners or through walls!),
this is collectively known as present and can be checked for
using the condition PRESENT followed by the number of the object
we are considering (the apple is object 3). If the object is
indeed present then we can display our message (0) which
describes the object, using the action MESSAGE which is followed
by the number of the message you want to display. Finally we top
it off with a DONE action to tell PAW that we have completed the
tagk

So the entry we need is:-
EXAMINE APPLE PRESENT 3
MESSAGE O
DONE

In the vocabulary LOOK is defined as a synonym of EXAMINE and in
the response table we already have an entry of:-

LOOK _ DESC

33

Process & Reaponse

It makes no difference to the compiler or the interpreter whether
our new entry uses the words LOOK APPLE or EXAMINE APPLE.
However it makes reading and understanding the response table
easier if we always choose the same word. Therefore change the
response table to insert the following entry before the existing
LOOK __ entry:-

LOOK APPLE PRESENT 3 ;Apple here?
MESSAGE 0 ;Describe it
DONE

The end of process table O (ie the response table) should now
look like this:-

RAMLOAD _ RAMLOAD 255 ;Reload all flags
DESC

[LOOK APPLE PRESENT 3 ;Apple here?
MESSAGE O ;Describe it
DONE

LOOK _ DESC

Our LOOK APPLE entry is a classic example of a response table
entry because if the condition PRESENT 3 fails then PAW will
continue to look for an entry to match the LS, in this case it
will find the next entry displayed which is LOOK _s» this entry
will trigger and describe the current location (the DESC action).
Assuming that the APPLE is indeed present then PAW will continue
with the condacts and display our description of the apple
(MESSAGE 0) the DONE action tells PAW to go and get another LS
because we have done something - this prevents the LOOK entry
triggering as well. -

So at the moment if the player tries to EXAMINE anything except
the apple (or tries to EXAMINE APPLE when it isn't present) they
will be rewarded with a fresh description of their current
location. This is why the LOOK APPLE entry MUST be specified
before the LOOK _ entry. Let's insert the entries to deal with
the sandwich, ticket and bench - they are:-

LOOK SANDW PRESENT 2 ;The sandwich is here
MESSAGE 1 ;Describe it
DONE

LOOK TICKET PRESENT 4 ;The ticket is here
MESSAGE 2
DONE

LOOK BENCH AT 4 ;The bench isn't an object
MESSAGE 3 ;380 check location
DONE

34

Process & Response

and they must be inserted before the LOOK _ entry.

AT is a condition which is followed by a location number which
will succeed (i.e. allow PAW to continue onto the next condact)
if the player is at the same location, this was used because the
bench was not an object, but as it is part of the description for
location 4 it will always be there!

Compile the adventure and test it to check that you can examine
these four items correctly and that the location is described at
any other time.

The Process Tables
We shall now turn our attention to the other Process tables.

It was stated earlier that the response table was process table
0. There can be up to 254 process tables as we shall see.

There are three process tables (O, 1 & 2)in the source file to
start with, Jjust like response PAW scans through them, bdut,
unlike response, it scans them not after obtaining a LS, but;

Process 1 is scanned immediately after PAW has described a
location. This allows information to be printed only
once when the player first arrives at a location or
when he requests a redescribe.

Process 2 just before requesting a new LS from the parser. This
is used to provide PAWs 'turn' at the game.

So far while playing our demo game we have had to end the game by
typing QUIT. Now the original storyline (if you can remember that
far back!) was to help the passenger find the ticket before the
bus arrived. Now we obviously could have an entry in response
which if the player said GET TICKET (and it was present) could
trigger the end of the game e.g.

GET TICKET PRESENT 4 ;The ticket is here
TURNS
END ;iThat's all folks!

but wouldn't it be much better to finish the game when the player
gets back to the bus stop?

¥We shall do so, but, first we need a message to describe the
arrival of the bus, so add the following message to the message
text section:-

35

Process & Response

/4

The bus arrives. I hand the ticket to the driver who
smiles and says "Sorry I'm late, hope you haven't been
standing too long?".

Note that message 4 must be entered after message 3. The
conditions for the end of the game are that the player is at the
buas stop (location 2) and in carrying the ticket (object 4). The
first condition of course will be AT 2, the other can be checked
with CARRIED 4 (pretty unusual names these conditions have...) so
the final entry needed in Process 2 is:-

AT 2 ;at bus stop
- - CARRIED 4 jwith ticket

MESSAGE 4 ;finished

TURNS

END

this entry will now be scanned just before PAW gets a new LS and
as soon as both conditions are met the game will end independent

of the commands the player uses to get to the bus stop with the
ticket!

Add this entry to Process 2 now ie at the end of TUTORIAL.SCE.

If you look at process table 1 you will see that the following
entries are present:-

_ _ NEWLINE
ZERO ¢} sIf it is light...
ABSENT o] ;and the light source is absent
LISTOBJ ;List the objects

_ _ PRESENT 0 3;If the light source is present
LISTOBJ ;List the objects

When each location is described the first action NEWLINE will
always be executed;

REVLIRE prints a carriage return/line feed. It's main purpose
here is to ensure that any text displayed will be on-a new line
because PAW does not start one at the end of displaying a
location description, the technical guide shows how to use this
to good effect to modify the location description to reflect
changes in the location.

From now on the two entries must be considered as a pair, their
ultimate purpose is to list the objects at the current location,
first a bit of background information;

PAVW uses flag zero to determine if there is light for the player

to see by (this feature is not used at the moment in our demo
game), if there is no light the flag will have a value other than

36

Process & Response

zero and PAW will say "It's too dark to see anything.” instead of
the description for the location. In this case the objects that
are present must not be listed.

Object O is assumed by PAW to be an object which provides light
which is why object O in our demo is a lit torch. If this is
present while the gamo ia 'dark' (flag O ias non zcro) then it
will override the darkness and so the objects must be described.

The two entries provide an example of using PAW to create an OR
situation ie List the objects if it is light OR if object zero is
present;

ZERO is the first condition we have met which tests the state of
a flag. ZERO O will succeed if flag zero contains O which means
there is light.

ABSERT ensures that Object O is not present (opposite of PRESENT
condition - all conditions have an opposite, e.g. AT has an
opposite of NOTAT and so on.), the next _ _ entry lists the
objects if object O (the source of light) is present so we do not
want this entry to succced as well (i.e. This deals with the
situation of it being light and object O being present which
would otherwise list the objects twice!).

LISTOBJ lists any objects that are present at the players current
location, if none are present it does nothing - it would look a
bit silly saying "I can also see nothing."!

Think about the above as it represents a fairly useful feature of
PAW which you may well need to adapt for use in your own games.

Right, now we shall reveal the better way of getting from the
introduction screen to the start of the game at the bus stop:

_ _ AT 0 ;Start of game
ANYKEY
GOTO 2
DESC

Insert this into Process 1 in front of the 2 existing entries.
This uses two new condacts ANYKEY and GOTO which are both
actions;

AFNYKEY prints "Press any key to continue.” and waits for you to
press a key, it then allows PAW to continue onto the next
condact.

GOTO is followed by a location number and moves the player to
that location, it effectively sets flag 38 (players current
location) to the value given, it does nothing else so it is
followed by a DESCribe to get PAW to display the new description.

37

Process & Response

This entry thus causes the title screen to be displayed (when PAVW
displays the first location description), a wait for a key and
then the game itself is started at the correct location.

You might like to go to the connections section and remove the
entry for NORTH in location O as this is not needed now.

Compile and test the adventure to see the above two entries in
action. The following input while at location 2 {the bus stop)
will 'solve' the game in one go:

GO WEST, WEST AND UP. GET THE TICKET. GO DOWN,EAST AND EAST.

You should then get the finishing message and an option to play
again, If not check the entries in Process tables 1 and 2
thoroughly.

Let's have a break and go back to deal with the ability of the
bag to contain objects. Thought we had forgotten about that,
didn't you? Well we nearly did. This will require some entries in
the response table and we are going to allow the player to LOOK
IN BAG, so we need a new message "In the bag is:", add this (it
should be message 5) to the messages section. We are going to
provide the player with the option of saying PUT ALL IN BAG as
well as PUT object IN BAG. We can use exactly the same system as
GET/DROP ALL discussed earlier. PUT is a synonym of DROP (which
takes care of DROP TICKET IN BAG and such similar phrases), so
the LS we must check for will be DROP (i.e. player is trying to
put or drop something), now if the player includes IN BAGC as part
of the phrase we want PAW to put the object in the BAG. This
means we must override the DROP entry already present, and if

the extra words are included in the LS put the specified odbject
in the bag.

Therefore the entry we need is:-

DROP _ PREP IN ;Put something in bag
NOUN2 BAG
PRESENT 1 ;Bag here?
AUTOP 1
DONE

so insert this between the existing DROP ALL entry and the
existing DROP _ entry. This shows how we check for an extended
LS (i.e. ensuring certain parts of the phrase were what we need).

PREP is a condition which is followed by a preposition from the
vocabulary. Prepositions are words used before a Noun to show its
relation to another word in the phrase, in this case the

condition will succeed if the player has used IN as part of the
phrase.

NOUN2 is a condition which is followed by a Noun from the

38

Process & Response

vocabulary. This will succeed if the player has used BAG in the
phrase. Combined with the previous entry it effectively stops PAW
looking at the condacts unless the LS was PUT _ IN BAG where the
underline is any object.

AUTOP is followed by a location number. Now we set aside location
1 for a special purpose early on in the tutorial, this is it, it
is used as the inside of the bag! So AUTOP just like AUTOD scans
the object definition section for a Noun which matches the
current first Noun in the LS, when it has found one it places it
at the location given, reporting "I have put the _ in the bag."!

The DROP ALL entry which exists will also work to deal with PUT
ALL TN BAG, because it doecs not ensure that IN BAG is part of the
LS and will trigger on both occasions, and in both cases 254 (or
CARRIED) is the location the objects will be coming from.

Now for a GET object OUT OF BAG type command we need an entry
similar to the above to override the GET _ entry which already
exists so insert the following entry between the existing GET ALL
entry and the existing GET _ entry:-

GET _ PREP ouT ;Get something out of BAG
NOUN2 BAG
PRESENT 1 ;Bag here?
AUTOT 1
DONE

AUTOT is followed by a location number which shows where the
object to TAKEOUT will come from.

The implementation of an ALL version of the command needs an
entry of its own, at the moment GET ALL causes a DOALI HERE (or
255), which is the current position of the player, to be carried
out. In order to get all from the bag we need to generate all the
objects that are inside it (location 1), so insert the following
entry prior to the existing GET ALL entry:-

GET ALL PREP ouT ;Get all out of bag
NOUN2 BAG
DOALL 1

Before you try the adventure again insert the following entry
before the existing LOOK _ entry. This allows the player to LOOK
IN THE BAG:-

LOOK BAG PREP IN ;Look in bag
MESSAGE 5
LISTAT 1
DONE

LISTAT is followed by a location number and lists any objects

39

Process & Response
present at that location, note that if no objects are present it
will print "nothing." so the above would result in:

In the bag is:
nothing.

which is correct, unlike LISTOBJ which because of its main use
does not print anything at all in that situation.

So compile and test the adventure again to ensure that you can
indeed PUT ALL IN BAG and GET object OUT OF BAG etc.

40

The Bird
The Bird

The tutorial game is a little bit simple to solve so we shall add
some complexity in the form of puzzles by creating two characters
to wander round our little world. These are termed 'Pseudo-
Intelligences' (PSIs for short) because they cannot obviously
think, but must appear to do so to the player. A PSI consists
mainly of a collection of messages, flags and process table
entries, but even a few simple entries can create a surprisingly
realistic effect. Creating a complex PSI of say a human can take
a fair bit of thought, but follows the same principles as we will
take with our two PSTs; a bird and a dog.

The bird will complicate the scenario as follows; The bird will
have the ticket at the start of the game (normally you would
assign an unused location to centain the birds objects, but we
will use location 252 - object does not exist in game - as we
have only one PSI that can have an object). This means you must
persuade the bird to drop the ticket, trying to GET it will
result in an "I can't do that” message and the bird flying away.
The bird also flies between the Bandstand and the Tree Branch ‘at
regular intervals. The way to get the bird to drop the ticket
will be to drop the sandwich at the same location. So lets get
that little lot working first.

Firstly change the object definition of object 4 to:-

/4 _ 1 _ _ TICKET
This makes the ticket a does not exist object which we are using
to indicate it is in the birds beak. Insert the Nouns DOG and
BIRD in the vocabulary with word values 21 and 22 respectively.
Then insert the following messages which will be needed.

/6

The bird drops the ticket to peck at the sandwich.
/7

The bird snatches the ticket.

/8

The bird ignores me.

/9

A small bird is here.

/10

The bird has a ticket in its beak.

/11

A small bird settles on the ground.

/12

A small bird lands on the branch.

/13

The bird sees the dog and flutters away quickly.
/14

The bird flies away.

41

The Bird

We will insert the messages to deal with the dog later after an
ear bending on yet another feature of PAW.

In a large game which contains several PSIs and & lot of
background action, Process tables 1 and 2 soon become so full of
entries it is nigh on impossible to work out what they do. Enter
stage left the other process tables to the rescue, these can be
'called’ from Process 1,2 or Response and used as an extension of
the table they are called from. Calling a process causes PAW to
save where it is at the moment and shift the action to the
indicated table. Note that when something is DONE in the called
process, then PAW will still shift back to the original table, so
some very powerful things can be achieved with thoughtful use of
these sub-process’. Users who program in other languages will
recognize this as a ‘subroutine’.

While PAW is in a sub-process it is quite possible for it to be
asked to call yet another sub-process -~ a sub-sub-process? and so
on down to a sub-sub—sub-sub-sub-sub-sub-sub-sub-sub-process!
That is 10 levels of subroutine calls may be carried out, this is
called 'nesting' a call, attempts to go further will result in an
Interpreter run time error.

We are not going to use anything like that here, only a sedate
sub-process. This will contain all the entries to deal with the
birds activities.

We will use process table 3 for the bird.

Flag 11 will be a 'working' flag to contain a value for use in a
comparison.

Flag 12 will contain the current location number of the bird.

Flag 5 is a special flag which if it has a value other than zero
PAW will reduce by one whenever it scans process 2 - this is
called an auto decrement flag. In this case it is used to count
the number of 'time frames' that have passed in the game, a time
frame is a single time round the big loop shown in diagram 3, and
at the moment this is done before every phrase the player types.
The bird will change location every three phrases on behalf of
the player which will create the appearance of action in the game
independent of the players input.

Now insert the following entries, in order after process 2, each

entry is preceded by an explanation of its purpose and any new
condacts it uses:

First determine if the bird is going to fly away this time
through the table, this is indicated by flag five being zero (as
it counts down from 3), if the ticket is at the same location as
the bird it will be destroyed (i.e. put at location 252 so the
bird 'has' it) and if the player is at the same location as the

42

The Bird

bird they will be told that the bird has snatched the ticket.
Note that the bird will continue its ¢cycle of movement evon if
the player does not see it, a tree certainly does fall even if
there is no one to see it in PAW!

/PRO 3 ;Bird
COPYOF 4 1 ;Copy loc'n of obj4(ticket) to flag!
12

SAME 11 iticket at same loc'n as the bird.
ZERO 5 ;Bird going to fly?

DESTROY 4 ;Bird 'GETS' the ticket

SAME 12 38 ;Bird at same location as player?
MESSAGE 7 ;Tell player about it.

Note there is no DONE action as we want PAVW to do each entry in
turn, the above entry shows how conditions and actions can be
mixed together to create new conditions.

The /PRO 3 line marks the beginning of process table 3,

COPYOF is an action followed by an object number and a flag, it
copies the current location of the specified object to the
specified flag. We use it in this situation to see if the ticket
is at the same location as the bird by following it with;

SAME is a condition which compares the contents of the two flags
and succeeds if they are the same.

DESTROY is an action which places the specified object at
location 252, the not-created location.

Now deal with the two possible movements of the bird. If the bird
is at the bandstand and flag five has reached zero then move the
bird, set flag 5 to 3 again and tell the player the bird is gone
if they were at the same location. Vice Versa if the bird is on
the branch.

_ _ EQ 12 8 ;Bird on branch?
ZERO 5 ;Time to fly?
LET 12 5 ;Move bird to bandstand
LET 5 3 ;Three phrases 'till move
AT 8 ;Player here as well?
MESSAGE 14 ;Tell them bird has flown
_ _ EQ 12 5 3Bird on bandstand
ZERO 5 ;Time to fly?
LET 12 8 ;Move to branch
LET 5 3 ;Three phraaes 'till move
AT 5 ;Player herec as well?
MESSAGE 14 ;Tell them...

EQ is a condition which is followed by & flag number and a value
and will succeed if the flag contains the value, in this case it
is checking if the bird is at a specific location.

43

The Bird

LET is an action which is followed by a flag and a value. It sets
the flag to the value.

Now we have dealt with the birds departure, next we must deal
with its arrival, and if it arrives in a location which contains
the player tell them about it.

EQ 5 3 ;Bird just flown?

SAME 12 38 ;Now at players location?
AT 5 ;On bandstand?

MESSAGE 11 ;Landed on ground

EQ 5 3 ;Bird just flown?

SAME 12 38 ;Now at players location?
AT 8 ;On branch?

MESSAGE 12 ;Landed on branch

Now if the bird has the ticket in its beak we must tell the
player.

_ _ EQ 5 3
SAME 12 38
ISAT 4 252 ;Ticket not-created?
MESSAGE 10 ;Has a ticket in beak.

ISAT is a condition followed by an object and a location number
and succeeds if the object is at the specified location.

Finally if the sandwich is at the same location as the bird the
bird will drop the ticket to peck at the sandwich. This entry
does not rely on flag 5 so it will be checked for every time PAW
checks process 2, so even if the player drops the sandwich after
the bird has arrived the correct sequence will still be carried
out.

COPYOF 2 11 ;Sandwich

SAME 11 12 ;at same location as bird?
ISAT 4 252 ;Ticket in beak?

COPYFO 12 4 ;Put ticket down

SAME 12 38 ;Player here as well?
MESSAGE 6 ;Tell them...

COPYFO is an action which copies the contents of the specified
flag to the current location of the specified object. There are
also COPYFF and COPYOO actions which you can probably guess the
purpose of.

That completes the control routine for the bird, but we need an
entry in Process 2 to call this table every time frame, so insert
the following entry at the beginning of process table 2:-

PROCESS 3 +Bird

44

The Bird

which will cause PAVW to execute our bird control table every pass
round its main loop.

We must ensure the bird starts at the correct location and that
the player knows the bird is there when the location is described
(or they will see messages about a bird arriving and flying off,
with the description containing no mention of it). So amend the
entry we made cearlier to process 1 to contain a LET 12 8, which
will ensure the bird is on the branch at the start of the game.
The modified entry should read thus:

AT [0] ;Start of game
- - ANYKEY
LET 12 8 ;Bird is on branch (locno. 8)
GOTO 2
DESC

Insert the following entry at the end of process table | to tell
the player the bird is present and if it has the ticket.

SAME 12 38 ;Bird at same location?
- - MESSAGE g ;Tell player

ISAT 4 252 ;Ticket in beak?

MESSAGE 10 ;Tell player

Finally in the Response section insert the entry:

GET TICKE SAME 12 38 ;Bird at same location?
ISAT 4 252 ;with ticket in beak?
CLEAR 5 ;Force it to fly away
NOTDONE ;"I can't do that"

This should go before the GET ALL entries and prevent the "There
isn't one of those here" message being produced if the bird is
present with the ticket.

CLEAR is an action which is followed by a flag number and sets
the flag to have the value 0. This will cause the bird to fly
away (which it might have been going to anyway) simulating its
fright at having a great hand descend on it to get its prized new
possession.

NOTDONE is an action similar to the DONE action but it fools PAW
into thinking that nothing wns done and thus causes it to print
the "I can't do that" message.

Now the moment of truth, upon testing the game you should be able
to watch the bird fly in and out of the bandstand and the branch,
play with the game for a while to see the fact that the bird does
indeed continue its roving existence. Then try dropping the
sandwich at the same location. Note that if you do not pick up

the ticket before the bird flies away it will snatch the ticket
back.

45

The Dog

The Dog

The dog will be added to complicate the game a bit more. The dog
will simply follow the player everywhere (veing a very obedient
dog) and frighten the bird off. Now a dog would not be able to
climb the tree so we must prevent the player from tempting the
bird with the sandwich on the branch. To do so we will arrango
for any object dropped while on the branch to fall to the ground.
The player will be able to get rid of the dog by putting the lead
on it and then tying the lead to the bench. In addition the
player will be able to 'speak' to the dog which will provide
another way of getting rid of the dog by asking it to SIT or
STAY.

Before we examine the entries in Process and Response needed to
control the dog insert the following words into the vocabulary
section: -

TIE 24 verb
UNTIE 35 verd
SIT 36 verb
STAY 36 verb
COME 37 verb
HERE 37 noun

and the following messages into the messages section:~

/15

The _ falls to the ground at the foot of the tree.
/16

The dog's bright eyes stare at me with mindless love.
/17

A dog is here.

/18

The dog follows me wagging his tail.

/19

A lead trails behind the dog.

/20

The dog is tied to the bench by a lead.

/21

Trustingly the dog lets me put the lead around its neck.
/22

I've tied the lead to the bench.

/23

Who should I say it to?

/24

The dog is sitting quietly.

/25

I've untied the dog from the bench.

Ensure you include the underline in message 15 as it serves a

46

The Dog

special purpose we will discuss later.

There is no real need to make the control routine for the dog a
separate process table as it is only one entry, but we shall do
80 in case you wish to expand the game later.

Flag 13 will contain the current location of the dog.

Flog 14 will contain: O - the dog {8 free to roam, t - the dog
has the lead around its neck, 2 - the dog is tied to the bench,
255 - the dog is sitting quietly.

The Process table needed for the dog is:-

/PRO 4 ;Dog

_ _ NOTSAME 13 38 ;Dog not where player is?
LT 14 2 ;5till able to move?
NOTAT 8 iPlayer isn't up the tree?
COPYFF 38 13 ;Move dog to players locno.
MESSAGE 18 ;Tell them its followed...

You should be able to work out what NOTSAME, NOTAT and COPYFF do
but the technical guide will help you out if you have problems.

LT is a condition which succeeds if the flag specified contains a
value Less Than the specified value.

Insert at the beginning of process table 2;

_ PROCESS 4 ;Dog
Note that this comes before the entry for the bird to ensure the
dog will be moved to the players new location before the bird is
checked.

3imilarly to the bird, entries are required in process table 1 to
inform the player of the dogs presence and these should be before
the entry for the bird:-

. _ SAME 13 38 ;Dog at same location?
MESSAGE 17 ;Tell player
EQ 14 1 ;With lead?
MESSAGE 19 ;Yes so tell player
_ _ S AME 13 38
EQ 14 2 ;Dog tied to bench?
MESSAGE 20
_ _ SAME 13 38
GT 14 2 ;255 is greater than 2 so
MESSAGE 24 ;tell player dog is sitting

while you are in process 1 modify the first entry to contain a

47

The Dog

LET 13 2 (before the GOTO) to make the dog start at the bus stop.

Now in order for the bird to be frightened away by the dog we
need an extra entry in process table 3. Now the entry must go
before the entry which decides to drop the ticket and after the
entries which make the bird fly. This will ensure that the bird
will fly away with the ticket if it has it and leave it if it
does not. So we need to insert the following as the seventh entry
in Process 3:- :

_ _ SAME 12 13 ;Bird and dog at same location
LET 12 8 ;Only ever on bandstand so
LET 5 3 ;movo to branch, throo phranon
AT 5 ;Player on bandstand?
MESSAGE 13 ;tell them bird is gone..

The last change to the process tables is to insert a sub-process
which we will be calling from Response to deal with speech to the
dog. The mechanism works very simply. If the player includes a
phrase in double quotes ("") in the input sentence, then the
parser will save where it was and carry on with decoding the
phrase. There is an action called PARSE which instructs PAW to
use the parser to decode the string the player typed in, this
then becomes the LS. It is only sensible to do this in a sub-
process as PAW will try to match the new LS against the rest of
the table. Insert the following to make Process table 5:-

/PRO 5 ;Speak to dog
_ _ PARSE ;Convert string to LS
MESSAGE 16 ;Not valid phrase so
DONE ;dog does not understand!
SIT _ ZERO 14 ;Dog not partially tied up?
SET 14 ;Now sitting quietly
MESSAGE 24 ;Tell player (always at same
DONE iplace as dog) Then DONE
COME _ EQ 14 255 ;Dog must be sitting
CLEAR 14 sNow normal
MESSAGE 18 ;Dog follows
DONE
_ HERE EQ 14 255 ;Dog sitting?
CLEAR 14 ;Now normal
MESSAGE 18 ;Dog follows
DONE
_ _ MESSAGE 16 ;Anything else.

¥We get around the limited vocabulary that the dog understands by
making him wag his tail for most things!

PARSE will allow PAW to continue looking at condacts if it fails

48

The Dog

to find a valid phrase, be careful here as the current LS may be
a bit jumbled up (i.e. the parser managed to get some sense out
of the phrase) so you should normally only print a measage like
"They didn't seem to understand” or some such similar and DONE to
return to your calling action. If it does form a valid LS PAW
will start to search the following entries for a match as with
Response. PARSE should only be used in & sub-process called from
Response it has no meaning in any other table.

Notice how the COME and HERE entries deal with a variety of
phrases that the player might try to call the dog again having
made it sit.

The last entry catches all the valid LS which may have heen in
the string and the dog has no specific response to.

Now to the Response table to allow us to insert the extra entries
to control speech and the dropping of objects in the treen.

First off the mark is the entry which causes all objects dropped
in the tree to fall to the ground, now this must go between the
entry which deals with putting objects in the bag and the normal
DROP _ entry.

DROP AT 8 ;Player on branch?
WHATO ;I say old boy!
LT 51 255 ;Valid object?
EQ 54 254 ;0bject carried?
MESSAGE 15 ;Its now bottom of tree.
PUTO 7 ;+Put it there
DONE

This is an example of creating an automatic action of your own,
like AUTOG and so on.

WHATO is an action which looks up the first Noun in the current
LS in the object definition section converting it into an object
number. This number is then placed in flag 51. Flag 51 always
contains the number of the last object referenced by PAW and
whenever it is set the associated flags 54 to 57 are also set.
Flag 54 contains the current location of the object.

PUTO is an action which changes the location of the currently
referenced object to be the one specified.

Message 15 contained an underline. Whenever PAW meets an
underline in text (be it message or location) it replaces it with
the current object hence the meosage is changed to suit the
object currently being dealt with.

Next a relatively simple entry to deal with PUT LEAD ON DOG and
this should go after the DROP ALL entry:-

49

The Dog

DROF LEAD PREP ON ;Ensure not Jjust a DROP LEAD
NOUN2 DOG
CARRIED 5 ;Player has the lead
SAME 13 38 ;is at same location as dog
LET 14 i ;Dog now has lead on
DESTROY 5 ;So player hasn't
MESSAGE 2t ;Tell them so.
DONE

The entries which follow deal with a new concept again, the
modification of the current LS. We want the game to understand
both TIE DOG TO BENCH and TIE LEAD TO BENCH as the the same
thing, now LEAD and DOG are separate word values, so the TIE DOG
entry converts the Noun into LEAD (55) and allows PAW to carry
out the TIE LEAD entry! A similar system is used for UNTIE.
Insert the following entries at the end of Process table O:-

TIE DOG LET 34 55 ;Convert DOG to LEAD

TIE LEAD PREP T0
NOUNZ2 BENCH

AT 4 ;Where bench is.
SAME 13 38 ;dog is here
EQ 14 1 ;with lead on
PLUS 14 1 ;now tied to bench
MESSAGE 22 ;tell player about it
DONE
TIE _ NOTDONE ;Ensure an I can't
UNTIE DOG LET 34 55 ;Convert DOG to LEAD
UNTIE LEAD AT 4 ;Where bench is
EQ 14 2 ;dog tied to it
CLEAR 14 ;Now free
MESSAGE 25 ;Tell player
CREATE 5 ;Recreate lead
GET 5 ;Try and get it.
DONE
UNTIE _ NOTDONE ;Ensure an I can't

The NOTDONE makes sure PAW reports "I can’t do that" if you try
and TIE or UNTIE anything other than the lead/dog.

PLUS is an action which is followed by a flag number and a value.
The flag is increased by the value. If the result exceeds 255
then the flag is set to 2565.

CREBATE is an action which is followed by an object number. It
causes that object to be at the position where the player is.

GET is an action which is followed by an object number. It

50

The Dog

attempts to get the specified object.

We use these actions instead of just placing the object at 254 so
that any weight and/or number of objects carried problems are
reported.

Finally the entries to allow speech to the dog, we have also
included the entry necessary to allow you to speak to the bird -

it just ignores you! Thease can also go at the end of Process
table O:-
SAY DOG SAME 13 38 ;It's here
PROCESS 5 ;Someone else to do the work
DONE
SAY BIRD SAME 12 38 ;Bird here
MESSAGE 8
DONE
SAY _ MESSAGE 23 ;Who?
DONE

Notice that we do not ensure the preposition TO is specified -
this allows the player to shorten their input if required. As a
general guide don't check for an extended LS unless it is
required to differentiate two similar phrases.

Now compile and test the adventure.
As a final test the following inputs should now work in the
indicated situations, they show some of the power which the

parser can provide your games with.

When on the path by the park bench with the lead and dog try;
PUT LEAD ON DOG AND TIE IT TO THE BENCH

then to untie it;
UNTIE DOG

When up the tree with the bag try;
PUT ALL IN BAG AND DROP IT. GO DOWN AND LOOK IN BAG

To make the dog sit down;
SAY TO DOG "SIT"

and get back up;
ASK DOG TO "COME HERE"

51

Do it yourself

Do it yourself

Here are a few points that you might like to tidy up in the
demonstration game as practice on using the system.

1/

2/

3/

4/

5/

6/

52

EXAMINE should respond to all objects even if it is with a
general reply such as "I see nothing special about the "
Hint: so as not to lose the use of LOOK on its own you could
use a condition LT 34 255 before triggering (i.e. ensure a
Noun was actually specified).

The bird should really fly away if you GET SANDWICH while the
bird is present. i.e. it will be pecking at the sdndwich and
any normal bird would fly...

UNTIE _ and TIE _ should have a message something along the
lines of "Tie what to what?", NOTDONE was an easy copout

How might you deal with the player typing PUT object IN BAG
when the bag is not present? at the moment the game will drop
the object instead, why?

Nothing was ever done with the torch, the following entries
will allow it to be turned on and off (you will also need TURN
as a verb in the vocabulary):

TURN TORCH PREP ON

CARRIED 7
SWAP 7 0
0K

TURN TORCH PREP OFF
CARRIED 0
SWAP 0 7
oK

Lookup the extra condacts in the technical guide and read the
chapter on light and dark - perhaps a cellar could be created
below the bandstand? The movement would have to be checked in

the Response table with an entry such as: (assuming 9 is the
new location).

DOWN AT 5 ;Player on bandstand?
SET 0 ;Flag 0=255=Dark!
GOTO 9 iNew location
DESC

Not forgetting an entry for UP which clears the flag!

¥hat happens if the player types CLIMB TREE or CLIMB UP TREE
and what is the best way to check for this? Hint: there is
only one thing you can climb in that location.

End of the road

End of the road

We hope that the above tutorial has provided an insight into some
of the many powerful facilities of the Professional Adventure
Writer. Now it is time for you to expand your knowledge of the
system by using it! The Technical Guide will provide an exact
specification of everything that PAW contains and in conjunction
with the essays in it on various subjects, will form ecssential -
if a little heavy - reading when writing your own games.

The file TIMING.SCE (when compiled) can be used to 'fine-tune'
your inastallation of the Interpreter. It helps you to set the
values of PAUSE and TIMEQUT we encountered at the beginning of
this manual.

Finally you will find a amall game in source form on the disc
called "TEWK". Looking through this should provide you with some
more ideas on giving your game an individual look.

¥hat should I do next?
HAVE FUR!
0K

Tim Gilberts - January 1988.

53

Appendix A

Appendix A: EDIT a simple Text Editor
Before you can use the Text Editor it needs to be installed. The
Edit program is called EDIT.COM, the install program is called
EDITINST.COM and the installation information is stored on a file
called EDIT.INS. To install the Text Editor type:-
EDITINST

the EDIT.INS file will be read and your screen should now look
something like this:-

Columns is set to 90

Lines is set to 31

Clear screen is set to '1B451B48' (hex)
Print at is set to '1B59' (hex)

Row bofore column is set to Y

Col offset is set to 32

Row offset is set to 32

Enter to change Columns

A
B to change Lines
C to change Clear screen
D to change Print at
E to change Row before column
F to change col offset
G to change row offset

or H to exit

Choose A-H?

The Editor needs to know the number of columns on the screen, the
number of lines on the screen, how to clear the screen and how to
position the cursor to a particular row and column on the screen.
Note that the Clear screen and Print at codes have to be entered
in hexadecimal. The values needed for Columns, Lines and Clear
screen are the same as needed for the Interpreter so you
shouldn't have too much trouble with those but remember that the
clear screen code should clear the screen and place the cursor in
the top left hand corner of the screen. The other variables may
need a bit more explanation. To position the cursor at a
particular place on the screen the screen controller needs to be
sent a particular sequence of codes to indicate that the
following values represent a row and a column - this is the
'Print at' code which can also be known as the move cursor code
or the cursor position lead-in sequence. The screen controller
may require the row number before the column number (ie Row
before column set to 'Y') or vice versa. When the screen
controller is informed of the row & column it may require an
offset to be added to each. The values required. for the offsets
are those to position the cursor at the top left of the screen
(common values are 0, 1 and 32).

54

Appendix A

Some example values are:-

Computer BBC with Z80 PCW8512 CPC464 CPC6128
(2nd processor) CP/M 3 CP/M 2 CP/M +
Screen mode MODE 3 24x80 off MODE 2 MODE 2
Columns 80 90 80 80
Tiinen 25 31 25 24
Clear screen 'oc’ ‘1B451B48"' ‘oc’ '1B451B48°
Print at "{F' '1B59"' VR ‘1B59’
Row before column N Y N Y
Col offset 0 32 1 32
Row offaoet 0 32 i 32

When you are satisfied that the values are correct enter 'H' to
exit and you will be asked "Do you want to update the file on
disc?”. Answer Y if you have made any changes.

To test that the Editor has been installed correctly type:-
EDIT EDIT.KEY
which will activate the Editor and load in the file EDIT.KEY.

Your screen should now look something like as follows with the
cursor at the top left of the screen:-

EDIT.KEY

The Inputs allowed are ASCII ie value 32-126
RETURN CTRL M ie value 13
Cursor up CTRL B ie value 5
Cursor down CTRL X ie value 24
Cursor left CTRL S ie value 19
Cursor right CTRL D ie value 4
Page up CTRL R ie value 18
Page down CTRL C ie value 3
Top of file CTRL T ie value 20
End of file CTRL B ie value 2
Goto line CTRL G ie value 7
Delete DEL ie value 127
Delete line CTRL Y ie value 25
Exit CTRL K ie value 11

Free:nnnnn Line:1 Col:1

If not you will have to reinstall the editor.
To exit from the Editor enter CTRL K ie hold down the CTRL key

and press K. You will be asked "Save file (Y/N)?" and you will
probably want to answer N.

55

Appendix A

If you have installed it correctly then you will see that the
bottom line of the screen is a status line which tells you how
much free space there is and where the cursor is. The file you
are editing shows you the inputs that the Editor will accept eg
CTRL X (ie hold down the CTRL key and press X) to move the cursor
down. Note that on some machines it is possible to program the
specific cursor keys to move the cursor. eg under CPM 3/+ the
SETKEYS command can be used thus:

SETKEYS KEYS.WP

which sets up the cursor keys to produce Wordstar control codes -
which is what EDIT uses. SETKEYS KEYS.CCP will restore the
keyboard after you exit,

In Use

The text editor is invoked using the command 'EDIT fname' whers
fname is the name of a file which may or may not already exist.
If the file does exist it will be read into memory. While the
file is being read in any TAB characters found will be expanded
(ie converted to spaces), any lines which are too long to be
displayed on the screen will be truncated and if the file itself
is too big that to will be truncated.

The length of a line is limited to one less than the screen width
ie 79 for an 80 column screen. This is because each 1line
contains an end of line character at its end. If you try to
enter a line longer than this you will get a "Too long" error
message.

The Inputs allowed are ASCII ie value 32-126
RETURN CTRL M ie value 13
Cursor up CTRL E ie value 5
Cursor down CTRL X ie value 24
Cursor left CTRL S ie value 19
Cursor right CTRL D ie value 4
Page up CTRL R ie value 18
Page down CTRL C ie value 3
Top of file CTRL T ie value 20
End of file CTRL B ie value 2
Goto line CTRL G ie value 7
Delete DEL ie value 127
Delete line CTRL Y ie value 25
Exit CTRL K ie value 11

eg to move the cursor to the end of the file hold down the CTRL
key and press B. The numbers shown above eg 5 for cursor up, are
to help you if you have cursor control keys on your keyboard and
you want to configure the keyboard to produce the correct codes
for the FEditor eg the cursor up key should be configured to
produce a 5.

56

Appendix A

When you enter CTRL K to exit you will be asked if you want to
save the file you have edited. If you answer 'Y' and you were
editing a file called TICKET.SCE this is what will happen:-

1.
2.
3.

[, -

Any existing file called TICKET.$3$$ is deleted

The edited file is written out to a file called TICKET.$$$

If the file TICKET.SCE already exists on the disc then any
existing file called TICKET.BAK is deleted and TICKET.SCE is
renamed to TICKET.BAK

The file TICKET.$$% is renamed to TICKET.SCE

If at any point the disc directory or the disc itself is
found to be full then the Editor will attempt to make some
more room and will retry. If there is still insufficient room
it will give you the option of changing discs. NB If you are
using CP/M 2.2 you should only change discs when prompted to
do so!

57

58

THIS PAGE INTENTIONALLY LEFT BLANK!

© 1986 Gilsoft International Ltd.

Published by Gilsoft International Ltd.,
2 Park Crescent, Barry, South Glamogan CF6 8HD
Telephone Barry (0446) 732765

%
All rights reserved, unauthorised copying, hiring or lending strictly prohibited

	pag 00
	pag 01
	pag 02
	pag 03
	pag 04
	pag 05
	pag 06
	pag 07
	pag 08
	pag 09
	pag 10
	pag 11
	pag 12
	pag 13
	pag 14
	pag 15
	pag 16
	pag 17
	pag 18
	pag 19
	pag 20
	pag 21
	pag 22
	pag 23
	pag 24
	pag 25
	pag 26
	pag 27
	pag 28
	pag 29
	pag 30
	pag 31
	pag 32
	pag 33
	pag 34
	pag 35
	pag 36
	pag 37
	pag 38
	pag 39
	pag 40
	pag 41
	pag 42
	pag 43
	pag 44
	pag 45
	pag 46
	pag 47
	pag 48
	pag 49
	pag 50
	pag 51
	pag 52
	pag 53
	pag 54
	pag 55
	pag 56
	pag 57
	pag 58
	pag 59

