THE

CODE

MACHINE

CODE

MACHINE

The CODE MACHINE consists of one cassette and this manual. The
packaging may contain space for a second cassette to allow you to store

a back-up copy.

The CODE MACHINE was written for the CPC 464 but is compatible

with the CPC 664 with an external cassette recorder.

Copyright 1985 by Picturesque

Al rights reserved. This book and the
accompanying computer program are
copyright. No part of either this book or the
accompanying computer program may be
reproduced, copied, lent, hired, or transmitted
by any means without the prior written
consent of the publishers.

Published by:

Picturesque,

6 Corkscrew Hill,
West Wickham,
Kent BR4 9BB

CONTENTS

INTRODUCTION
SECTION 1 — THE MONITOR/DISASSEMBLER “AMMON"

General Description

1.1
1.2 Loading AMMON
1.3 Access to AMMON
1.4 The prompt and Cursor
1.5 AMMON COMMANDS
151 M — Inspect and change memory contents (Hex)
1.5.2 ESC — Escape
153 $ — Inspect and change memory contents (ASCII)
154 | — Insert
155 D — Delete
156 A — Area Move
157 F —Fil
158 P — Print Hex/Graphics Dump
159 Z — Disassembler
15.10 N — Number Converter
1.5.11 E — Access to Editor Assembler
15.12 Example program for Running and Debugging commands
1.5.13 B — Breakpoint
1.5.14 J — Jump and Execute
1.5.15 K — Breakpoint restore
1.56.16 R — Registers display
1.5.17 C — Breakpoint continue
1.5.18 T — Trace (Single Step)
15.19 S — Search
1.5.20 L — Lower ROM access
1521 U — Upper ROM access
1522 ¥ — Return to Basic

1
1
1
1.
1
1

6 Interrupts

.7 ROM states and the STACK
.8 Screen modes

9 Keyboard

.10 The Monitor in practice

.11 Summary of Commands

SECTION 2 — THE EDITOR/ASSEMBLER “AMMAS”

2.1 General description
2.2 Loading AMMAS
2.3 Access to AMMAS
2.4 THE EDITOR

241
242
243
244
245

AMMAS COMMANDS

Screen display

Entering a line of Source Code
LIST

EDIT

25

26

20

28

246 AUTO

247 RENUM

248 DELETE

249 COPY

2410 NEW

2.4.11 CLEAR

2.4.12 MODE 1

2.4.13 MODE 2

2.4.14 BASIC

2.4.15 External commands

2.4.16 COPY CURSOR

2417 COMMENTS

2.4.18 ESC

2.4.19 Resetting the Keyboard

2.4.20 MONITOR access

CASSETTE AND DISC Commands

251 FILE

252 SAVE

253 LOAD

254 VERIFY

255 External DISC Commands

THE ASSEMBLER

2.6.1 The Object Buffer

2.6.2 Numbers

2.6.3 ASCIl Characters

2.6.4 Arithmetic

265 LABELS

26.6 Label slicing

26.7 JRIDJNZ

2.6.8 Assembling Source Code
ASSEMBLER DIRECTIVES

27.1 ORG

2.7.2 END

27.3 EQU

274 DEFL

275 DEFB

276 DEFW

2.7.7 DEFS

278 DEFM

279 PRNT

2.7.10 ENT

MULTI-SECTION SOURCE FILES

2.8.1 Saving a section of Source Code
2.8.2 Loading a section of Source Code
2.8.3 Verifying a section of Source Code
2.8.4 Assembling a multi-section Source file
2.8.5 Assembly from Disc/Tape to Disc/Tape
29 ASSEMBLER ERROR MESSAGES
2.10 Summary of Commands

SECTION 3 — USING “AMMAS” and “AMMON"
SECTION 4 — Z80 MNEMONICS

INTRODUCTION

The CODE MACHINE is a full feature Machine Code programming development package
consisting of an Editor/Assembler and a separate Monitor/Disassembler. Both programs
are entirely self-contained, and are written entirely in Machine Code.

The Editor/Assembler (called “AMMAS”) will allow you to enter and edit Source Code
listings (mnemonics and label names); to produce Object Code (the actual Machine Code);
to print your Machine Code listings onto a printer; and to Save and Load Source Code or
Object Code.

The Monitor/Disassembler (called “AMMON?) gives you all the commands you need to
test and debug your Machine Code programs, as well as facilities to investigate the inner
workings of your Amstrad computer.

You will find that both programs are very quick and easy to operate, which makes the
CODE MACHINE an ideal programming aid for beginners and for experienced Machine
Code programmers alike.

If you are new to Machine Code programming, you will need to purchase a book to teach
you how to write in Machine Code — and there are several available to choose from.
Machine Code is not an easy language to write, and it is beyond the scope of this manual
to teach the subject, but, used in conjunction with a good book, the CODE MACHINE will
help you to understand how Machine Code works, and where you are going wrong.

But, to get the most from programming your CPC 464 in Machine Code, we strongly
recommend that you purchase ““The Concise Firmware Specification” from AMSOFT
(SOFT 158) as this will give you all the information you will need about the computer for
simple and effective Machine Code programming. Indeed, without this mine of informa-
tion, your Machine Code programs will be very limited and will never be able to use the
many excellent features of the CPC 464.

SECTION 1
The MONITOR DISASSEMBLER “AMMON” Version 1.1

1.1 General Description

The MONITOR allows you to inspect or change the contents of memory locations, and
works entirely in Hex, which is the most logical number system to use in Machine Code. A
display of memory is also available in ASCII characters to allow you to search for
messages or to enter messages.

One of the biggest problems with Machine Code programming is tracking down errors,
since there is no built-in error detection as there is in the Basic interpreter. The MONITOR
helps you over-come this by allowing you to insert a Breakpoint in your Machine Code,
which temporarily stops your program at that point when it is run. Having encountered a
Breakpoint, you can use the MONITOR'S commands to check that the values in the CPU
registers are correct, that data bytes have the correct values and that your program has
not overwritten or corrupted itself.

The MONITOR will give you a display of the contents of all the CPU registers at the Break-
point, and allow you to disassemble your program (or any part of memory including either
ROM). A more precise but more time-consuming method of error detection is available
with the Single Step feature. Each instruction is executed in isolation, with a comprehen-
sive screen display of the machine status: You can even Single Step through the ROM
routines. Either the Upper or Lower ROM can be enabled or disabled, and can be
Disassembled or Single Stepped through. Memory management commands allow you to
move the contents of a block of memory to a new location; to insert or delete a number of
bytes within a block without re-typing the rest of the block: to fill a specified area with any
value; and to search for up to 10 consecutive ASCIl characters, or up to 5 consecutive
Hex bytes.

To simplify any interchange with Basic, a Dec-Hex-Dec number converter is included,

along with printer routines for the disassembler. The MONITOR is totally compatible with
Basic, allowing you to return to Basic at any time. Machine Code programs can either be
run from Basic, with the CALL function, or from the RUN command within the MONITOR.

The Monitor is fully relocatable in memory so that it can be loaded into the most conve-
nient location for the code you are working on. To allow easy access from Basic, the
Monitor is set up as an RSX so that it is accessible via an External Command, and it
allows direct access to the Assembler when both are in memory together.

1.2 Loading AMMON :

As the Monitor operates in memory as an RSX, it is advisable to load it into a clean
machine, so clear the CPC464 by CTRL + SHIFT + ESC. If you have Discs attached then
enter the direct command | TAPE.IN (ENTER) and type RUN” (ENTER) to Load the
Monitor. AMMON gives you the option of making a Back-up copy onto Disc or Cassette,
and if you have Discs attached, you should enter the direct command | TAPE.OUT if you
require a cassette back-up. You should also set the cassette write speed from Basic
before Loading the program.

AMMON is fully relocatable, and a Basic loader program loads first and asks you

2.

for the start address for the Monitor. Type in this address either as a decimal value or as
a Hex value (preceded by ‘&) and press ENTER. HIMEM will be set to one byte below the
entered address, and then the Code will be loaded in. At this point you will be asked
whether you want to make a Back-up copy. The program is then run to actuate the
relocator. The relocate routine returns to Basic with the normal ‘Ready’ message.

The lowest address you can normally Load to is &1321 (Hex). However, if before loading
the Monitor, you permanently reserve the Disc/Tape buffer, you can force a much lower
minimum loading address. To do this, execute the following Basic commands:

OPENOUT “DUMMY"":MEMORY HIMEM-1

As HIMEM and the Disc/tape buffer will not now be consecutive in memory, Basic cannot
recover the buffer after use, and the Monitor will also use this buffer when it loads its own
code. Be aware when using the Monitor that the buffer still exists as far as Basic or your

machine code is concerned.

The Basic loader for the Monitor does not contain a SYMBOL AFTER 256 command, so if
you need to define other graphic characters after the Monitor has loaded, you should clear
the definable graphics with SYMBOL AFTER 256 before loading the Monitor, otherwise
HIMEM and the graphic definitions will separate, and Basic will not be able to recover the
graphic area of memory. If you see a ‘Memory Full' error when you load the Monitor, it is
likely that SYMBOL AFTER is the cause, or that you have specified too low an address for
Loading.

To locate AMMON to the highest available address, do not enter a start address but simply
press ENTER. In this case, AMMON will position itself immediately under the current
HIMEM, resetting HIMEM to underneath itself. (This is useful when using the Assembler
and Monitor together or when other ROM or RSX software is required).

There is no check made on the Start Address that you specify, and the machine will crash
if you overwrite Static Variables, Jumpblocks etc.

AMMON is totally self-contained and not dependant on any Basic. Having loaded and
relocated, you can now Load any Basic or any other Machine Code that you require, but
remember that if you move HIMEM to a higher address than the Start Address given on
Loading the Monitor, you run the risk of corrupting AMMON.

Loading a back-up Copy
To Load your back up copy of AMMON, type RUN “MON" and follow the screen prompts.
You will not be offered a further back up option.

WARNING

THIS PROGRAM IS COPYRIGHT AND ONE COPY ONLY
may be made for your OWN PERSONAL USE.

It is illegal to sell copies or to give copies to friends.

N.B.
For the purposes of the examples in this part of the manual, it has been assumed that
AMMON has been loaded to the highest available part of memory on Loading.

1.3 Access to AMMON

Having Loaded and relocated, you can access AMMON with the External Command

| MON, or by CALL nnnn, where nnnn is the Start Address supplied on Loading. You will
be greeted with the screen message “SPACE for MONITOR". On entry to AMMON, you
will always see this message along with everything else that is currently on the screen.

Pressing SPACE will clear the screen and allow entry to the Monitor with the Prompt and
Cursor displayed on the bottom line.

1.4 Prompt & Cursor

The prompt () indicates that the MONITOR is waiting to be put into a command mode.
It does not appear at the start of every line of the display, but only appears when a com-
mand routine has ended, and the MONITOR is waiting for a new command instruction.
The cursor is visible for the majority of the time, and indicates a request for a keyboard
entry, and shows where the result of that keyboard entry will be displayed on the screen.

1.5 AMMON COMMANDS
The range of commands offered by the MONITOR is as follows:—

Display a memory location & its contents in HEX, and change its contents.

Display a memory location in HEX and its contents in ASCII, and change its
contents.

Escape from a command mode to the Prompt & Cursor.
Insert up to 255 bytes into a block of memory.

Delete up to 255 bytes from a block of memory.

Move the contents of an area of memory to a new location.
Fill a specified area of memory with a given byte value.
Hex/Graphics memory dump to Screen/Printer.
Disassemble to Screen or Printer.

Number conversion: Hex to Dec and Dec to Hex.
Access to Editor Assembler (if loaded).

Set a Breakpoint.

Jump to a specified address and execute the code there.
Restore code after a Breakpoint.

Register display.

Continue execution of program after a Breakpoint.

Trace (Single Step) with front panel display.

Search for Hex or ASCII values in memory.

Lower ROM enable/disable.

Upper ROM enable/disable.

Return to Basic.

Select screen stream.

#-(Cr-m-io:uxf—mmzN-u-n>o—§ » =z

All command modes are accessed by a single keystroke denoted by the letter in the left
hand column above. All keyboard entries are checked for validity, and at any given time
only the permitted entries are accepted. Any other key press is rejected and the keyboard
is scanned again.

All numeric inputs and displays are in HEX to facilitate the entry and inspection of Z80 Op-
codes. The number conversion command simplifies any exchange between Hex and
Decimal.

All references to addresses and their contents in these instructions will be in HEX, and will
be shown as a two or four figure number with no prefix or suffix.

1.5.1 M — Inspect & change memory contents (Hex)
The screen should show the Prompt & Cursor on the bottom line. If this is not so, then
press ESC.

Type M

An inverse M will appear immediately to the right of the prompt, and the cursor will move
along the bottom line by one character space.

Now type in the HEX value of the address that you wish to inspect, say 6000. (You can
use the MONITOR to inspect or change any memory location in RAM or ROM, although
you cannot alter the ROM values.)

Do not worry if you find different values in these memory locations from those shown.
The address appears on the screen as you type it in, and as soon as you have typed the

fourth digit, a two character Hex number appears on the screen to the right of the ad-
dress, showing the Hex value of the contents of that memory location.

Eli60068 60 B

The cursor has now moved on, leaving a space after the two contents digits.
Now type FF.

pRaEBHEe 88 FF W

This has loaded the Hex value FF into memory location 6000. The value is loaded into the
location automatically after you type the second digit.
Now type ENTER.

HJEBBEH 68 FF
81 86 W
The original line with the prompt has scrolled up one line, and 6001 00 is now displayed on
the bottom line. At all times, the MONITOR operates with a scrolling screen, and new in-

formation is always displayed on the bottom line.

Wg ENTER displays the next memory location and its contents. To enter a value in this
address, enter the two HEX digits, or type ENTER again for the next memory location.

5.

Now let's check that FF really has been loaded into address 6000.
Type M

?&g?ﬁgg@ﬂ F¥F
-

The screen has scrolled up one line, and the inverse M has reappeared on the bottom line.

Typing M after a HEX address, data entry, or ENTER, allows you to re-enter the M com-
mand routine at the start. To re-enter the M command in the middle of typing a Hex ad-
dress, press ESC to escape, and M to enter the M command.

Now type 6000

HJEBEBEB aiEa FF
Bl 58
HEBEOBEG FEFE OB
The contents of 6000 are shown as FF.

To summarize the M command so far, you can sequentially step through memory loca-
tions using ENTER and change the value of the contents of each address, or, by typing M
again, you can define a new starting address.

To re-enter the M command with a partly typed address on the screen, press ESC to
escape to the Prompt, and then type M to enter the M command.

Now type 00 to clear the contents of address 6000. You will notice that the cursor is still
visible on the bottom line of the screen to the right of the 00 just entered. Although ad-
dress 6000 now contains the value 00, (the value was changed immediately you typed the
second 0) you can change it again if you wish.

So, if you enter an incorrect value, and realise what you have done before you press
ENTER, you can correct your mistake without having to specify the address again. In fact,
you can make only two attempts at entering a value before the routine returns you to the
prompt and cursor, when you will have to type M to re-enter the M command.

Remember, that in the M command, ENTER only has the effect of stepping on to the next
memory location, whereas in other commands (where applicable) ENTER causes the
operation to be executed.

Imagine that you have just entered a machine code routine from, say 6000 to 6200, and
you realise that you need to change the value of one byte somewhere near the middle of
the routine, but you do not know the precise address. You could spend a long time guess-
ing addresses and looking at their contents, or repeatedly pressing ENTER until you find
the right byte. But if you type M, to re-enter the M command, and look at the contents of
an address somewhere near the beginning of the routine, then press ENTER, and hold it
pressed, after about 1% seconds the screen will start scrolling quite fast, and will rapidly
display successive locations until you release ENTER. In this way you can quickly scan
through a routine until you find the byte you are looking for. To effect the alteration, having
released ENTER, you will again have to type M xxxx to re-enter the M command at the
correct address, and then change the contents of that address.

6.

1.5.2 ESC — Escape from a command
ESC allows you to escape from a command mode, and returns you to the Monitor’'s
Prompt & Cursor.

Press ESC
The screen will scroll and the Prompt & Cursor will reappear on the bottom line of the
screen. You can now enter any of the Monitor commands. All command routines, with the

exception of R (Register display) and K (Breakpoint clear), will accept ESC to escape at
any time up to the point of execution.

1.5.3 $ — Inspect & change memory contents (ASCII)

This command operates in a similar fashion to the ‘M' command, but allows you to enter
text directly from the keyboard. It is by no means a word processor, but it offers a much
simpler method of text entry than by converting letters to their character codes, and
entering the codes individually with the ‘M’ command.

The command takes the form: $ aaaa where $ is the command mode, and aaaa is the
starting address of the text block.

Let us enter a simple message into a free area of RAM.
Type $ (Shift and ‘4’) to enter the $ command.
An inverse $ will appear on the bottom line of the display.

Type 6100
The address is displayed as normal.
As you type in each letter of the message, it is displayed on the screen, to the right of the
address and its present contents, and the character code is stored in that address. The
screen scrolls automatically, displaying the next address and its present contents. You do
not need to press ENTER to access the next address.

If there is a valid character code in an address, it will be displayed between the address
itself and the cursor, otherwise a question mark is displayed.

All upper and lower case characters can be entered by use of the SHIFT keys. The only
exception is $ which is reserved as the character to access the command.

Graphics and User Defined Characters cannot be entered directly.

In other words, any single character that appears on a key top and that can be accessed
by a single key press or by one level of shift can be entered.

Now type in the following message:
This is “AMMON"

(Use SHIFT + 2 for the ** marks). Having typed it in, mistakes included, now review the
message.

Type $ (Shift and 4) to re-enter the $ command.
Type 6100 the start address.
Type ENTER and hold it pressed until the whole message is on the screen.

If the message is correct, you can now press ESC to return to the Prompt.

If you have made a typing error, or if you want to put another message at a new starting
address, type $, to re-enter the $ command at the beginning, in the same way that the ‘M’
command is re-entered. You will have to enter the new address before making your cor-
rection, or starting you new message.

The repeating keyboard works as in the ‘M’ command, to allow you to review a message
quickly.

1.5.4 | — Insert

If, having written a machine code routine, or having entered Data into memory, you find it
necessary to add extra bytes in the middle of that routine, the Insert command allows you
to insert up to 255 bytes at any point, and automatically moves up memory a specified
area of RAM by the number of bytes that you wish to insert.

The Insert command takes the form | aaaa bbbb nn where | is the Insert command mode,
aaaa is the Hex address of the first byte of the insertion, bbbb is the Hex address of the
highest byte in RAM of the block of memory to be moved, and nn is the number of bytes
to be inserted, in Hex.

Example
Press ESC to restore the prompt and cursor to the bottom line, and then, using the
M command, enter the following consective values into memory:

6000 00
6001 01
6002 02
6003 03
etc.

600A DA
6008 0B
600C 0C
600D 0D
600E OE
600F OF

(The values entered into these locations are purely for a demonstration of the Insert and
Delete commands, and, if run, will probably cause the CPC464 to crash.

In the above example, the start of the imaginary routine is 6000 and the end is 600F. We
will now insert 5 bytes, the first new byte to be at 6004.

8.

Press ESC to restore the prompt and cursor.

Type | to get into the Insert mode.

Type 6004 the address of the first byte of the insertion.
Type 600F the address of the highest byte to be moved.
Type 05 the number of bytes to be inserted (Hex).

At any time up to this point, you can press ESC to escape from this command mode, as
no change to RAM has occured yet. Indeed, if you make a typing error at any time, you
must press ESC and start the command again.

If you have entered the Insert example correctly, you can now press ENTER to effect the
insertion. The screen will scroll up one line, and the prompt and cursor will return to the
bottom line. The insertion has been completed.

Using the M command, check through the 21 locations from 6000. Addresses 6004 to
6008 inclusive will now contain the value 00, and 6009 to 6014 will contain the values 04
through to OF.

When using the Insert command on machine code routines, any absolute addresses in the
remainder of the routine that referred to the area that has been moved will need to be
changed to maintain correct operation of the routine.

1.5.5 D — Delete

This command has the opposite effect to Insert, and takes the form D aaaa bbbb nn,
where D is the Delete command mode, aaaa is the address of the first byte to be deleted,
bbbb is the address of the highest byte to be moved down RAM, and nn is the number of
bytes to be deleted.

Assuming that the result of the Insert example is still in memory,let us now move the area
of RAM from 6009 to 6014 back to its original place.

Press ESC to restore the prompt and cursor.

Type D to enter the Delete command.

Type 6004 the start of the area to be deleted.

Type 6014 the end of the area to be moved.

Type 05 the number of bytes to be deleted (Hex).
Type ENTER to effect the deletion.

The prompt and cursor will reappear on the bottom line, and the deletion will be complete.

Now check through addresses 6000 to 6014, using the M command. The contents of
these locations will be as they were before the Insert example, and locations 6010 to
6014 will have been loaded with the value 00.

Again, any absolute addresses relating to the area of RAM that has been moved by
Delete, will now need to be changed.

1.5.6 A — Area Move
This command will Block Move a specified area of RAM, and takes the form A aaaa bbbb
ccce where A is the Area Move command; aaaa is the present start address, bbbb is the

9.

present end address of the area to be moved; and cccc is the new starting address.

Assuming that the example used for the | and D commands is still in memory, let us now
move the whole area from 6000 to 600F up memory, to start at 6200.

Press ESC to restore the prompt and cursor.

Type A to enter the Area Relocate mode.

Type 6000 the start address of the area to be moved.
Type 600F the end address of the area to be moved.
Type 6200 the new start address.

Type ENTER to effect the move.

The screen scrolls up one line, and the prompt and cursor return to the bottom line. The
move is complete.

Using the M command, check that addresses 6200 to 620F have been loaded with the
same values as those still remaining in addresses 6000 to 600F.

This routine will allow you to move up or down memory, from any original starting address
to any new starting address, even if the new area overlaps the original area. The original
area (unless over-written by the move) is not changed.

Try moving the area from 6000 to 600F to a new start address of 6008 and then move it
back again.

A word of warning. Most AMMON commands that allow you to alter the values in memory
locations will also operate on the area of memory containing AMMON. Always check
carefully that you are not about to overwrite AMMON which uses nearly 7K from the Start
Address given on loading. See Section 1.10 for more details of how much memory is used
by AMMON.

1.5.7F — Fill

The Fill routine allows you to enter the same byte value into a given area of RAM, and
takes the form: F aaaa bbbb xx, when aaaa and bbbb are the start and end addresses
respectively of the specified area, and xx is the value to be entered.

Press ESC to restore the prompt and cursor.
Type F to enter the F command.

Type 6020 the start address.

Type 6100 the end address.

Type AA the value to be entered. (Hex).
Type ENTER to effect the Fill.

The screen scrolls, and the prompt and cursor appear on the bottom line of the screen.
The fill is complete.

Now use the M command, with ENTER kept pressed, to verify that each byte from 6020 to
6100 inclusive has a value of AA.

10.

1.5.8 P — Print Hex/Graphics Dump

This command allows you to produce a Hex Dump of the contents of any section of
memory onto the screen or printer, or to produce a graphics/ASCII Dump to the screen
only. It takes the form P aaaa bbbb where P is the command name; aaaa is the Hex Ad-
dress of the first byte to be printed; and bbbb is the Hex address of the last byte to be
printed. The display is shown thus:

K308 0817
prRENIERS At
BeBEG 6l 83 2F ED 4 gg 0s

a 3
agabg 32 82 BHD C3 WO BO 98-
P16 C3 16 BA C3 169 BAa DS C39

Each line shows the Hex contents of eight successive locations, with the Hex address of
the first byte shown in the left column. The routine will only print complete lines, and if the
end address that you specify is part of the way along a line, it will print up to the end of
that line.

If the Prompt is not visible on the bottom line of the screen, press ESC, otherwise access
the command by pressing P followed by the address from which you want to start the
display. If you want an open-ended screen display only, then press ENTER; but if you want
Printer output, you must define the address at which the display will stop. Enter that Hex
address following the start address, and press ENTER.

You will now be asked to select Hex or $ (ASCII) by pressing either ‘H' or SHIFT + 4. If
you only specified a start address, both options will only give a screen output of up to 16
lines and then wait for ENTER to continue. If you typed a start and an end address, the
Hex option then asks for printer requirements, but the $ (ASCII) option will only give a
screen display as ALL 256 ASCII and Graphic characters are displayed, and most printers
will not cope with the graphics or will try to interpret the control codes.

If you want a printer output of the Hex Dump, press y in response to the guestion
PRINTER (Y/N). While using the printer, you can stop the command before the specified
end address by pressing ESC at any time.

1.5.9 Z — Disassembler

This command will disassemble any part of RAM or ROM, either to the screen or to the
Printer. It provides a display that includes the Hex address of the first byte of the instruc-
tion, the Hex values of the bytes that relate to that instruction and the Z80 mnemonic for
that instruction. The full set of ZBO mnemonics can be disassembled.

For access to the ROM contents, see section 1.5.20 and 1.5.21 on ROM enabling.

The command takes the form: Z aaaa bbbb where Z is the command mode, aaaa is the
hex starting address and bbbb is the hex end address of the part of memory you wish to
disassemble.

Type Z to access the command.

Type 0000 the start address
You can now either type in an end Hex address where you want the disassembly to stop,
or you can press ENTER to achieve an open-ended disassembly in the same way that the
P command operates.

1

If you specify an end address, you will be given the same Screen/Printer options as described
in the P command above. If you attempt to disassemble any part of AMMON, an error
message “INVALID ADDRESS” is displayed.

The disassembly will appear as follows:

?gaaaa 0020
INTER? {4’ 31>
0086 81897 LD BC , 7F89
0063 ED4S our <., C
90685 38005 JP a5 80
0088 C3IB2R9 JP Baga
0068 C37CEB9 JP B97C
OO0E <& PUSH BC
OOBF <4 RET
0010 ¢3I16BA JP BA1G
06132 C3108aA JP Bl
0016 DS PUSH DE
0617 Ca RET
0018 C3BFEBI9 JP BOBF
G618 C3B1BS JP BaB1
OfB1E E9 JP HL
Oa1F 00 HOP
a026 C3CBBA JP BACE
ENTER for more; <{ESC> foxr ENMD

When using the screen display, 16 lines of disassembly are shown followed by the
message:

ENTER for more, ESC for end

Pressing ENTER will display the next 16 lines unless the end address is reached, when the
Prompt & Cursor will be returned.

Pressing ESC in response to the above message will also return you to the Prompt & Cur-
sor.

If you are disassembling to a printer, the routine continues uninterrupted until it reaches
the end address. The printer can be stopped early by pressing ESC at any time.

All disassembled addresses and values are in Hex. Relative jumps show the address to
which the jump will go, with the ofiset value shown with the hex coding for that instruction.

In both the Z and P commands, if the printer is not connected, is off line or otherwise ap-

pears BUSY, then the printer option fails after 3 seconds and the normal prompt and cur-
SOr reappear.

1.5.10 N — Number Converter
This routine will convert Hex numbers to Decimal or vice versa.
Type N The Number command.

12.

The screen will display:
NUMBER H/D?

Type H (for Hex) or D (for Decimal) to indicate the number system of the number you wish
to convert.

Type H to convert a Hex number to Decimal.

The screen will scroll, and show 'H' (followed by the cursor). Now enter four Hex digits.
(You must enter leading zeros when entering a Hex number).

Type 4000
Type ENTER

The display will now show:
H 4000 = 16384
with the prompt and cursor on the bottom line.

To convert from Decimal to Hex, Type D instead of H in response to "NUMBER H/D?",
and enter your decimal number, without leading zeros. Again type ENTER to produce an
answer.

1.5.11 E — Access to Editor Assembler

Press ESC to restore the Prompt & Cursor to the bottom line of the screen and then type
E followed by ENTER. If the Assembler is resident in memory it will be accessed, other-
wise the Monitor's Prompt & Cursor is displayed. A full check of the Assembler is impossi-
ble, and it is up to the user to ensure that the Assembler and its associated tables and
buffers have not been overwritten by Monitor commands. If in doubt, you should reload
the Assembler from Disc or Tape.

1.5.12 Example program for running & debugging commands
To demonstrate the next five Monitor commands, use the M command to enter the follow-
ing short program at 6000 Hex, or at any other convenient location.

N.B.

If you have loaded AMMON on its own into your CPC464 and have positioned it as high in
memory as possible by pressing ENTER in response to “‘Start Address?'' when loading,
then you should find that the memory locations at 6000 Hex will be free to accept this ex-
ample.

6000 01 00 00 LD BC,0000 ; Clear BC
6003 11 00 00 LD DE,0000 . Clear DE
6006 21 00 00 LD HL,0000 . Clear HL
6009 03 INC BC ;. BC = BC + 01
600A 13 INC DE i DE=DE+ 0
6008 23 INC HL i HL = HL + 01
600C C9 RET . Return

Start 6000

End 600C

13;

Having entered Hex codes, go back to 6000 and check that the codes are correct. (Type
M 6000 and check the contents of each location).

It is recommended that you would normally Save a machine code program before running
it in case it crashes, which it is certainly likely to do unless you are an experienced
machine code programmer. In this case, there is no real point in Saving the program, but
if you wish to do so, refer to the section on “The Monitor in practice’.

The last line of the routine is a RETURN instruction which it is usual to use at the end of a
Machine Code routine, to return you to the Calling program (usually Basic).

When you are satisfied that you have entered the above program correctly, press ESC to
restore the Prompt & Cursor.

1.5.13 B — Breakpoint

This command allows you to temporarily interrupt a machine code program at any point,
and return control to the MONITOR, so that you can inspect the values in the CPU
registers, and in RAM, and make corrections as necessary.

It takes the form B aaaa, where B is the Breakpoint command mode, and aaaa is the ad-
dress of the instruction that the break will replace. (aaaa must be the address of the first
byte of a multi-byte instruction).

The Op. Codes in the three addresses aaaa, aaaa + 1, and aaaa + 2 are automatically
stored by AMMON, and these addresses are then loaded with the values CD OD BF
which constitutes a CALL to the entry point of AMMON. It must be a CALL to maintain
correct operation of the Stack.

On entering AMMON at this address, the values in the CPU Registers are stored within
AMMON:; the Stack Pointer is set to the Monitor's Stack; and the message ‘'SPACE for
Monitor™ is displayed on the bottom line of the screen, in addition to the screen display
that your program has created. The Monitor will now wait until you press SPACE, when it
will clear the screen and display the Prompt & Cursor.

You will now be able to use any of the MONITOR commands to check or alter the routine,
before returning control to the routine at the point at which the break occured. As the
MONITOR uses its own integral Stack separate from the Program Stack, there is no
danger of over-writing the Program Stack during a Breakpoint.

Before running the example in section 1.5.12 enter a Breakpoint at address 6009. This will
have the effect of stopping the program after the Registers BC DE and HL have been
cleared, but before they are incremented.

If the Prompt is not visible on the bottom line of the screen, press ESC, otherwise

Type B the breakpoint command mode
Type 6009 the breakpoint address

There is no need to type ENTER, as the Breakpoint is set after typing the fourth digit. The
screen will scroll, and the prompt will appear on the bottom line.

14.

Using the M command, check that 6009 to 600B now contain CD OD BF in place of 03 13
23, the latter having been stored for later replacement.

1.5.14 J — Jump & Execute

The Jump command allows you to jump out of the control of the MONITOR to the starting
address of any routine that you write, and it takes the form J aaaa where J is the Jump
command mode, and aaaa is the start address of your program.

You can run your Machine Code programs either with the Monitor's J command, or by
returning to Basic and using the CALL command. Either way, all the Monitor's facilities are
available to you after a Breakpoint.

In this example, we will use the 'J' command.

Press ESC to restore the prompt and cursor
Type J to enter the Jump command.
Type 6000 the start address.

Type ENTER

The screen is cleared and the routine will run, and then access the Monitor with the
screen message ““SPACE for Monitor™".

The sequence of events on executing a J command is:

i) the screen is cleared
i) your program'’s screen Mode is set
ii) Interrupt status is restored
iv) the Stack Pointer is set to the program Stack

v) the start address is put into the Program Counter and the pro-
gram is executed.

The Monitor uses its own integral Stack (see Section 1.7) which is set on entry to AMMON,
therefore the program Stack which is set by the initialisation routine when your CPC464 is
switched on must be reset before your program can be run. This is done for you by the J
command. The use of two Stacks helps to make AMMON invisible to your programs.

Having run, the example program will have encountered the Breakpoint at address 6009,
and ““SPACE for Monitor"* will be displayed on the screen. Press the SPACE bar to access
AMMON.

The first operation after a Breakpoint should always be to restore the correct byte values
to the addresses where the break occured.

1.5.15 K — Breakpoint Restore *
This command restores the correct values into the three bytes overwritten by the Break-
point command.

Type K
The screen will show K 6009 and will scroll up one line, displaying the prompt on the bot-

tom line. There is no need to type ENTER. Using the M command, verify that the original
codes have been replaced in addresses 6009 to 600B.

151

Only ONE Breakpoint can be entered at any time, so a Breakpoint Restore (K) command
must be executed before the next Breakpoint (B) is set, and it is recommended that a
Breakpoint Restore (K) command is keyed immediately after a Breakpoint has been en-
countered.

If you enter an incorrect breakpoint with the B command, type K immediately afterwards
to restore the original values to the incorrect breakpoint address, and then re-type the
Breakpoint.

The K command can only restore the last entered Breakpoint.

Let us now inspect the CPU registers, to make sure that the program is working as we
expect.

1.5.16 R — Register display
If the prompt is not visible on the bottom line of the screen, press ESC, otherwise

Type R

The screen scrolls up, automatically displaying the CPU register contents thus:

>
o

O?E L]
f’E’ 8D
B’C” 2F 8D
D’E” BFG2
H L~ S
ar 13 BTTOTO0G
BC aH00
DE Q0000
HL 28006
Ix BFFE
Y SDEB
5P BFF A
PC 6009

There is no need to type ENTER.

As you will see, the Program Counter contains 6009, the address at which the Break-
point occurred. The BC, DE and HL register pairs will all contain 0000. In this example,
these are the only registers that we are interested in.

The FLAGS registers are shown in BIT form, with the purpose of each fiag indicated
above. If a flag is SET, a 1 is indicated, and if it is reset, a O is shown.

16.

The CPU registers are displayed with their contents shown in Hex.

When the Monitor is entered at a Breakpoint, the values in the Registers immediately
prior to the Breakpoint are stored, so that the operation of your routine can be checked,
and corrections to the routine can be made before continuing.

Having a) encountered one Breakpoint, b) restored the correct values after the break,
and c) verified that the CPU registers have their correct values, we will now enter
another Breakpoint, and continue the routine.

If the prompt is not visible on the bottom line of the screen, press ESC, otherwise,
Type B 600B

This will set a new Breakpoint after the BC and DE register pair have been incremented,
but before the HL pair is incremented.

1.5.17 C — Breakpoint Continue

The command allows you to Continue from a Breakpoint, and is executed by typing C
followed by ENTER. You can escape to the Prompt by pressing ESC before ENTER. The
program will continue as if nothing had stopped it. The only information that is lost to
the program is the contents of the Screen RAM.

The screen is cleared, the program Stack is reset; and the CPU registers are re-loaded
from their data block before the Breakpoint address is put into the Program Counter,
and execution is resumed.

Type C
Type ENTER

The routine will run on until it reaches the next Breakpoint, and will then display ''SPACE
for Monitor''.

When the Prompt appears after pressing SPACE,

Type K to restore the bytes occupied by the Breakpoint.
Type R to display the registers.

You can now verify that the Program Counter contains 600B, the BC and DE register
pair contain 0001, having been incremented, and the HL pair still contains 0000.

When a routine encounters a Breakpoint, it returns control to the MONITOR with a CALL
operation, the return address being stored on the Program Stack, for use by the Break-
point Continue (C) command. Having encountered a Breakpoint and studied the CPU
registers and/or memory locations, one of two situations will occur:

1) Everything will be as you expect, and the program is correct to that point. In this
case, you would normally restore the Breakpoint bytes (‘"K' command) and use the
Breakpoint Coninue (‘C' command) to continue the program to a new Breakpoint.

or

2) An error will become evident, in which case you would track down the error and
correct it, and then, leaving the current Breakpoint set, use the 'J' command to re-
run the program up to the same Breakpoint, to check that your correction is
successful.

1.

The Program Stack operation of the MONITOR allows you to do this providing that, at
the Breakpoint, there have been an equal number of PUSHes and POPs, or CALLs and
RETs. If the Program Stack is not balanced at the Breakpoint, you will have a
cumulative stack imbalance every time you use the ‘J' command after a Breakpoint (but
not if you use the ‘C’ command). In this case to restore the Stack to normal once you
have traced an error, RETURN to Basic ('Y’ command) and re-access the monitor from
the beginning, then use the ‘J' command to run your program up to the Breakpoint
again.

Having set a Breakpoint in a program, you can either use the J command to run the
program, or you can RETURN to Basic, and run the program from the CALL command
in Basic. For example, if you have written some Machine Code that is to be accessed
from a Basic program, you can set a Breakpoint in the Machine Code using AMMON,
and then RETURN to Basic and run the Basic program. When the Breakpoint is reached
in the Machine Code, AMMON will be accessed, and the Breakpoint Continue command
(C) will allow the Machine Code to resume and eventually RETurn to the Basic program
that CALLed it.

The MONITOR has been carefully designed to allow this free interchange between Basic
and machine code, without upsetting the Stack.

1.5.18 T — Trace (Single Step)

The Trace command allows you to execute Machine Code in ROM or RAM one instruc-
tion at a time, or in certain specified blocks. But at ALL times, the execution of the
Machine Code is strictly under the control of the Trace command, and a crash is almost
impossible.

Commands such as LDIR (a self repeating block move) can cause a crash by over-
writing AMMON, as can any instruction that writes into the memory occupied by AM-
MON. Altering the value of the Stack Pointer could also overwrite the Monitor. AMMON
uses nearly 7K from the Start Address given on loading, but see Section 1.10 for fuller
details.

The comprehensive screen display throughout the Trace command gives a permanent
display of the CPU register contents, a disassembly of the current and the next instruc-
tions, the contents of the last five stack locations, and the contents of specified memory
locations.

aa o P
G011 B0 MO P

i
=z
]
@
W
=]

atE”’ PEIBD 51515 515 COFQ
B’C” ¥ 8D DD 8B
D*E” BFO2 F1EA
H'L"” AE 74 B dar #2?F 85
AF oo BrToToen

BC 28FF : 8 98 06 0 90
DE BFA2 3 B0 BF 4D 4F
HY. Ge4%5 36 00 00 44 5%
B OBBEE waw a ey
SP BFF A u a
PC 663 1

L9 01 89 ?F ED 49 €3 80 05 C3

18.

The Trace command is accessed from the Main Monitor by typing T (when the prompt
and cursor are visible on the bottom line of the screen) followed by the 4-digit Hex ad-
dress of the instruction from which single stepping is to start. If you do not specity a
Hex address, but press ENTER immediately after typing T, the Trace command is ac-
cessed, and the address shown against PC in the register display is used as the starting
address. To return to the Main Monitor from the Trace command, press ESC. The
screen will clear, and the Main Monitor’'s prompt and cursor will appear on the bottom
screen line. All register values are passed between the Main Monitor and the Trace
command, and you can therefore use all the available commands of the Monitor to
debug your machine code.

The Trace command contains its own set of commands which are separate from the
main Monitor commands, and allow control over

a) executing instructions singly;
b) running on to a Breakpoint (not the same as a Breakpoint set by the main Monitor),

and
c) skipping to the end of a subroutine.

Any section of code that will only operate correctly when run at full speed (e.g. timing
loops, sound output or interfaces to external equipment) will not operate correctly in the
Trace command as each instruction is decoded and executed separately. The main
Monitor commands for setting a Breakpoint and running the code should be used in-
stead.

To demonstrate the trace command, enter the following short routine using the M com-
mand in the main Monitor to enter the Hex code shown in bold type.

(If you have already accessed the Trace command, press ESC to exit to the main
Monitor before entering the example program).

&400 0005 ORG &400H
400 212C64 010 LD HL , 542CH
6407 113412 0015 LD DE, 1234H
64046 TA D020 L.D . D

6407 CD1064 Q025 CALL &410H
&H406 7B OO30 LD R E

6408 CD1064 OOES CaLlL &410H
&A40E Q0 0040 MNOF

H40F 00 0045 KOF

L4100 4F Q050 SUB1L L.D C.A

6411 E&FO 0055 AND OFOH
6413 1F 0O0&0 FRA

H414 1F 0065 FR&

6415 1F OO70 RRA

6416 1F D075 RRA

6417 CD2164 0080 CALL &421H

&41A 79 0085 LD A,C
5418 E&OF 0090 AND OFH
641D CD2164 0095 CALL &6421H
5420 C9 0100 RET
6421 C&30 0105 SURZ ADD 3JIOH
6427 FE3A 0110 i 2AH
6425 3802 o115 JE C.+2
6427 C&07 0120 app 7
L4429 77 0125 LD {HL.) A
&H42Rh 23 0130 INC HL
6428 C9 0135 RET
&420C 00 0140 LBEFEB O
642D 00 0145 DEFE O
&42E 00 0150 DEFE ©
&H42ZF 00 B DEFER ©
0160 END

The code from 6400 to 640D converts the value held in the DE register pair into four
ASCII character codes representing that value, and puts the four character codes into
memory at 642C (this location held in HL). The code starting at 6410 and at 6421 are
subroutines called during this process.

Having entered the code press ESC to restore the main Monitor Prompt and then type T
followed by 6400. The Trace display will be formed in a similar fashion to that shown
above. The STEP mode is automatically selected, and is shown at the top of the screen.
Below that is a disassembly of the next instruction to be executed. The Register display
shows the current register contents (which could be anything as no instructions have
been executed yet). The Stack display shows the last five pairs of bytes on the Stack,
with the last value placed on the Stack indicated by the *.

The M display line at the bottom of the screen gives a window onto memory locations,
and the starting address can be changed at any time by typing M followed by a four
digit Hex address. In the example above, it would be useful to see a display of the
memory that will eventually contain the four ASCII characters, so type M642C. The M
display is updated as soon as the fourth digit is entered and you do not need to press
ENTER.

While in the Trace command, the address of the next instruction can be changed at any
time by typing S followed by the new Hex address followed by ENTER. This restores
STEP mode and updates the display ready for execution of the next instruction at the
new address.

To execute the first instruction (LD HL,642CH) simply press ENTER. The display will now
update and show 642C in HL. Alongside that value are shown the contents of the bytes
at and immediately following that address. You will see that the disassembly of the first
instruction has scrolled up one line, and that the next instruction (LD DE,1234H) is

20.

displayed on the second disassembly line. The upper of the two Disassembly lines is
always the instruction just executed, and the lower is always the instruction about to be
executed.

Continue pressing ENTER and STEP through the whole routine, stopping when the NOP
instruction at address 640E is displayed on the second disassembly line, and observe
the effect on the display of each instruction. The register display of the PC value will
ALWAYS show the address of the NEXT instruction to be executed, and the Stack
display will only change when the Stack is used (in this case the CALL and RET instruc-
tion).

At any time you can exit from the Trace command back to the main Monitor by pressing
ESC. The screen will clear and the normal Monitor Prompt will be displayed at the bot-
tom of the screen. You may find that you have to press ESC more than once to do this.
For example, if you were in the process of typing in a command within the Trace facility,
the first ESC will clear that command, and the second ESC will access the main
Monitor.

You may have found that single stepping through the two subroutines became tedious.
after you had stepped through them once, and proved that they did work. To speed up
this process the Trace command contains two functions that can be used to
automatically step through sections of your program that have already been proved.
They are:

(i) BREAKPOINT

Do not confuse this Breakpoint function with the BREAKPOINT command in the main
Monitor. Setting a Breakpoint while in the Trace command does not alter your program,
as it does in the Main Monitor. The Breakpoint address is stored, and after each instruc-
tion is executed by the Trace command, the address of the next instruction in your pro-
gram is compared with the Breakpoint address. If the program address is not equal to
the Breakpoint, the next instruction is decoded and automatically executed, until the
program address is equal to the Breakpoint address, whereupon the whole display is updated
and the STEP mode is accessed.

To use the above example to demonstrate the use of the Breakpoint, press ESC to ac-
cess the main Monitor and use the M command to write 00 into the four memory loca-
tions from 642C Hex. (You do not need to do this to use the Breakpoint, but in this ex-
ample it will help to clarify what is happening by clearing the ASCII codes already writ-
ten there). Re-enter the Trace command by typing T6400 and then type B640E, followed
by ENTER. This has put the Trace command into BREAKPOINT mode and this is
displayed at the top of the screen.

Pressing ENTER again will cause the program to be executed under the control of the
Trace command until the Breakpoint is reached. The display is then fully updated and
STEP mode accessed.

While the program was being executed, the only part of the display to be updated was
the value of PC in the Register display. Should you have set a Breakpoint at an address
that for some reason is never reached (perhaps a conditional instruction that has
jumped elsewhere) the constantly changing PC value will indicate that the command is
still running. In this case you can escape by pressing ESC, which will access the STEP
mode again and update the display showing the address at which the Break occurred.

21,

You may find that this leaves unwanted addresses or register contents on the program
stack, and an incorrect value for SP in the register display. This will not affect the
operation of the Monitor as it uses its own stack. The simplest way to restore the Stack
Pointer to its normal value (usually as set by Basic) is to return to Basic (Key Y) and
then to re-access the Monitor with | MON.

(i) SKIP to RET

This function can be accessed at any time while in the STEP mode. Type R and press

ENTER. The top line of the display will now show STEP SKIP to RET. Pressing ENTER
again will cause the Trace command to execute your program automatically, and stop

(in the STEP mode) when it has executed the RET instruction associated with the next

CALL instruction. While the subroutine is being executed, the display of the PC register
value is the only part of the display to be updated. On completion of the subroutine the
whole display is updated and the normal STEP mode is accessed.

To demonstrate, type S6400 (assuming you are still in the TRACE command) followed by
ENTER. The display will update and you will be ready to single step from address 6400.
Press ENTER three times to execute the first three instructions of the example program.
The next instruction will now be CALL 6410. Press R followed by ENTER, to access the
SKIP to RET mode.

Press ENTER again, and the subroutine at 6410 will be executed in its entirety, including
the two CALL instructions within it, and the display will update showing the LD AE in-
struction at 640A as the next instruction on the second disassembly line, and the
original CALL on the line above, The normal STEP mode will also be indicated at the top
of the screen.

You can now continue stepping through the program using the ENTER key. So press
ENTER to execute the LD AE, and then press ENTER again to execute the CALL 6410.
The next instruction will be shown as LD C,A at address 6410 and is the first instruction
in the subroutine. If you now press R and ENTER to access the SKIP to RET mode, a se-
cond press on ENTER will execute the program up to the RET associated with the next
CALL. The next CALL is at address 6417 (CALL 6421), and execution will stop showing
LD A,C at address 641A as the next instruction. Follow this through by referring to the
program listing to clarify what has happened.

If you use the SKIP to RET function, and a RET instruction is found before a CALL in-
struction, that RET instruction will cause automatic execution to stop and the STEP
mode to be accessed. This can be demonstrated by single stepping through the exam-
ple program using the ENTER key in normal STEP mode, until an instruction in the
subroutine at 6421 is shown as the next instruction. Using the SKIP to RET mode at this
point will automatically execute the program until the RET at 642B. The routine will stop
in the STEP mode, showing the next instruction as being the one following the CALL that
called the subroutine.

To summarise SKIP to RET, automatic execution continues up to and including the RET
instruction associated with the next CALL, OR to the next RET if a CALL is not en-
countered in the meantime.

In the same way as the Z (Disassemble) command in the main Monitor gives an ‘IN-
VALID ADDRESS' error if you try to disassemble the Monitor, you cannot single step
through the Monitor program, the same error message being displayed, If this error con-
dition occurs while you are in the Trace command, an automatic exit to the main
Monitor is made, and the main Monitor's Prompt is shown at the bottom of the screen.

22

REGISTER POINTER

You will notice that an inverse video (g) is displayed immediately to the left of the
register contents column. This is the Register Pointer and is used to enable the contents
of a register pair to be easily changed from the TRACE command. The pointer can be
moved up or down by using the cursor control keys. To alter the contents of a register,
move the Pointer until it indicates the required register pair, and then press the COPY
key. The current value is shown on the bottom line of the Trace display.

You can now either press ENTER to restore the same value or type in a 4 digit Hex
number to change the register value.

This facility only operates in the STEP mode of the Trace command and can easily be
used while debugging software using the main Monitor. Access the Trace command by
typing T followed by ENTER. All register values are passed to the Trace command. and
after making your register alterations, exit to the main Monitor by pressing ESC. Again,
all register values are passed back to the main Monitor.

ROM and INT status
The Trace screen displays the staus of ROMs.

The display ROM 00 shows the currently selected Upper ROM
and U 0
L 0 shows the enable status of the ROMs. (0 = OFF)

These will change if a different Upper ROM is selected, or if an OUT (C),r command to
Port 7F hex (i.e. B' = 7F) is stepped through. Amsoft’s FIRMWARE SPECIFICATION
(SOFT 158) gives more details on ROM paging and selection.

The INT display will change if an El or a DI instruction is stepped through.

If your program uses routines that must be run at full Machine Code speed to operate
(e.g. timing loops or sound output), you will need to escape from the Trace command by
pressing ESC and use the main Monitor commands to run those routines properly. All
the register values are passed back to the main Monitor, and you can then set a normal
Breakpoint (using the main Monitor B command) and use the C (Continue) command to
continue executing your program in real time from the point at which Trace stopped.

Having encountered the Breakpoint, use K to clear the Breakpoint, and access the
Trace command by typing T followed by ENTER. All the Register values and the address
of the next instruction are passed back to the Trace command ready for you to continue
Single Stepping from the address shown against PG in the register display.

1.5.19 S — Search

This command will search for up to 5 consecutive Hex bytes or 10 consecutive ASCII
characters, and display the address of the first byte of the sequence each time it oc-
curs.

Type S followed by a Hex start address, plus an optional Hex end address. If no end ad-
dress is given and ENTER is pressed after the start address, then FFFF is assumed as

the end address. The ROM enable states (set by U and L described below) are taken in-
to account when searching.

Having entered a start address and an end address/ENTER, select H (Hex) or $ (ASCII)

23.

option to define what is to be searched for. Pressing H will allow up to 5 Hex values (2
digits each) to be specified. Do not press ENTER between each value, but only when all
values are entered. The Search starts automatically after the fifth value. Pressing SHIFT
+ 4 ($) will allow up to 10 ASCII characters to be defined. Again ENTER starts the
search if less than 10 characters are defined.

If more than 16 locations are found to be successful, the Search stops and waits for
ENTER before continuing.

1.5.20 L — Lower ROM access

Press ESC to access the prompt and cursor if it is not already on the bottom screen
line. Then press L. An inverse video ‘L is displayed, along with ‘0" or ‘1" to indicate

the current lower ROM enable state (1 = enabled : 0 = disabled). If you do not want to
change the state, ESC will return you to the prompt and cursor; but pressing ‘1" or ‘0’
will set that ROM enable state for the purposes of the Monitor. If you enable the Lower
ROM, the Monitor commands that access memory (e.g. M. Z, $, P, S etc.) will acess the
lower ROM and not the RAM when addressing locations between 0 and 3FFF.

1.5.21 U — Upper ROM access

This works in a very similar way to L, but for the currently selected upper ROM, Press U
and the currently selected ROM number (in Hex) is displayed along with ‘0" or ‘1’ to give
its enable status. Pressing ‘1’ or ‘0" will set that enable status.

To change the current Upper ROM selection press ESC to restore the prompt and cur-
sor, and then press CTRL + U. This will display the currently selected Upper ROM
number (in Hex). If you do not want to change the ROM number, press ESC, but to ef-
fect a change, type in the new ROM select number as two Hex digits (e.g. 07). This will
select the new ROM if it exists, and enable it.

When either Basic or the Assembler are accessed, the currently selected ROM defaults back
to ROM 0.

Please also read the section on ROM STATES for more information on ROM/RAM states.

1.5.22 Y — Return to Basic
The Monitor allows you to return to Basic so that you can debug machine code that is

accessed as a subroutine to Basic by the CALL command.

Press ESC to restore the prompt and cursor.
Press Y, which will display ‘‘Return to Basic"
Press ENTER to exit from the Monitor.

To re-access the Monitor from Basic, use the External Command | MON as described in
section 1.3.

1.6. INTERRUPTS

As well as the Interrupt status being shown in the Trace display, the Interrupt status is
maintained throughout the Monitor. In other words, if at a Breakpoint the Interrupts are
disabled, then they will maintain that state when a 'C’' command is used to continue
after'the Breakpoint, unless you have single stepped through an El instruction.

24,

Interrupts are enabled on exit to Basic or to the Assembler.

To allow Breakpoints in a routine that has diverted the Interrupt routine (i.e. changed the
JP instruction at 0038). the normal system default values at 0039 and 003A are stored
in the Monitor when it is first loaded. This default value is restored on exit to Basic or
the Assembler.

1.7 ROM states and the STACK

Although the CPC464 requires that the BC' registers contain the current ROM state and
Port number at ALL times when interrupts are enabled or when O/S Calls are made, the
Monitor has been written in such a way that Breakpoints can be entered in your pro-
grams at points where this is not true. Equally the TRACE routine will operate with ANY
value in ANY register without crashing. To do this, and to allow ROM paging when the
Monitor resides below 4000 (i.e. underneath the Lower ROM), certain Monitor operations
MUST be RAM based.

To avoid conflicting with programs that occupy the normal free area of RAM, part of the
Machine Stack area has been ‘taken over' by the Monitor for its RAM based routines.

The stack area reserved by the CPC464 is from BFOO to BFFF, and the Monitor uses the
area from BFOO to BF2F for these RAM based routines. The Monitor also uses its own
Stack separate from the program Stack, and this is also based at the lower end the
Stack page, from BF30 to BF96. The remaining Stack area from BF97 to BFFF is free
for your program to use, and although this is a reduced area there are some 104 bytes
(52 pairs of bytes) for program use. If your program should use more than this then the
Monitor will not crash, but the bottom of your program Stack may be corrupted by the
Monitor.

As it is possible to enter the Monitor from a Breakpoint with a non-standard value in BC'
there is now way of checking whether your program has enabled or disabled either of
the ROMs before that Breakpoint. Therefore, at a Breakpoint, the stored ROM state as
shown by the U and L commands is not updated. However, in the TRACE command, if
an OUT (C),r command to Port 7F is detected as the current instruction, this is
simulated, and the ROM state display is updated.

1.8 Screen Modes

On entry to the Monitor, pressing SPACE will not change the screen mode from that
which your program had set. It is possible to change the screen mode from within the
Monitor by using CTRL + 1 for Mode 1 or CTRL + 2 for Mode 2. Any change made
will be effected by use of a routine in the Lower ROM which has the effect of destroying
many screen parameters (e.g. cursor locations and screen colours) for all screen win-
dows, and these parameters affect your program as well. The original program screen
mode is reset after a J or C command.

Providing that you can use the Monitor satisfactorily in the same Mode as your program
(i.e. without changing Modes), the Monitor is designed to retain as much of your pro-
gram screen data as possible. This is done by using a different screen window or
Stream within the Monitor from your program. Normally the Monitor uses Stream 7 for
all its screen output, but any of the Streams (0 to 7) can be defined as the Monitor
Stream.

25:

(SHIFT + 3) is used to change Monitor Streams, and the existing Stream
number is displayed. Type in a single number (O to 7) to change Streams.

The new Stream is selected, and on that Stream,

the VDU is enabled

the whole screen is selected as the window area
and opaque mode is selected.

The program Stream is reselected after a J or C command and in the Trace command.

If the screen Mode is not changed within the Monitor, all of your program screen
parameters should remain unchanged while using the Monitor.

1.9 Keyboard

If, on entry to the Monitor from a Breakpoint or from Basic, the Keyboard has been re-
defined such that Monitor command keys are not recognised, then it is possible to com-
pletely reset the keyboard from within the Monitor.

CTRL + @ will reset the keyboard, but the old status of the keyboard will be lost. This
will always work, as the ‘@' key is tested directly by the Monitor as a Key number and
not as the character returned by that key.

The ENTER key is set to repeat (which is does not normally do in basic) to facilitate the
M and $ commands. Its repeat state on entry to the Monitor is restored after a J or C
command, and on exit to Basic or the Assembler.

1.10 THE MONITOR IN PRACTICE

Length and location of AMMON

To enable the most effective use to be made of the relocatable feature of AMMON, a
memory map will help to explain memory usage:

§ ==l ---=Total loading length-======-=---)1

H H !

e——— -Actual length-------- n H

[. Relocate :

i ANMON ‘]

! . Code i
Start Address Total loadina length = 1FBB
actual lengt = |9EE

26.

When AMMON is loaded, a short Basic program is first loaded which is used to get the
Start Address and alter HIMEM to (Start Address - 1). The Machine Code is then loaded
into memory at the Start Address and this code is 1FBB Hex long (about 8K). The
relocate routine is at the higher memory addresses, and is overwritten with zeros once
it has been run. So having relocated, the actual length of AMMON is only 19EE (almost
6.5K).

There is no check made on the validity of the Start Address supplied, and the highest
values normally acceptable to the system, without overwriting memory reserved by the -
Operating System, are:—

Without Discs, but with SYMBOL AFTER 256 = 8C40
with Discs, and with SYMBOL AFTER 256 = 8740

These values will be BO Hex (128) bytes lower if you do not execute a SYMBOL AFTER
256 before loading.

The simplest method of loading AMMON to the highest available location is to press
ENTER in response to ‘'Start Address?"’ when loading.

Saving & Loading Code

If you have used AMMON to write short Machine Code routines or blocks of data direct-
ly into memory without using the Assembler, and you wish to Save this code you should
return to Basic and use Basic commands to do this. You can specify the start location
and length in Hex or use AMMON's number converter to get the Decimal equivalents.

System Status throughout AMMON
AMMON has been written to preserve as much as possible of the CPC464 machine
system status while you are using the Monitor functions.

On entry to AMMON, the sequence of events isi—

i) INT status is stored

ii) All register contents are stored

iii) Stack Pointer is set to AMMON Stack

iv) Current program screen Mode is stored

v) Repeat state of ENTER key is stored: key is set to repeat
vi) Screen is set to AMMON default Stream (usually Stream 7)
vii) Entry message is displayed

On exit from AMMON by way of J or C commands:—
i) Screen Stream is set to program Stream
ii) Screen Mode is reset to program Mode only if Mode has been
changed in AMMON
iii) ENTER key repeat status is reset
iv) INT status is reset
v) Register contents are loaded with stored values
vi) Stack Pointer is reset to program Stack

On exit from AMMON to Editor Assembler:—
i) Stack Pointer is set to its default value in program Stack
ii) ENTER key repeat status is reset
iil ROM O is selected as the current Upper ROM
iv) The Interrupt Vector at 0038 is reset to its default value
v) Interrupts are enabled

27.

On exit from AMMON to Basic:—
i) ENTER key repeat status is reset
ii) ROM O is selected as the current Upper ROM
iii) The Interrupt Vector at 0038 is reset to its default value
iv) Interrupts are enabled
v) Stack Pointer is reset to its default value in program Stack

Single Stepping ROM Routines

If you use the Trace command to Single Step through ROM routines, particularly those
in the Lower ROM, you may find that your computer creashes and will not accept any fur-
ther keyboard input. The Lower ROM routines most likely to cause this effect are those
concerned with printing text to the screen. AMMON uses these routines to create the
Trace display, and the Lower ROM routines expect to find the data they use for that
display intact. By Single Stepping the ROM routines, you will change that data, and thus
cause the CPC464 operating system to lock up.

If you escape from the Trace command while Single Stepping a Lower Rom routine, you
will probably leave the Lower ROM enabled. Any address between 0000 and 3FFF will
then be interpreted by the Main Monitor commands as a ROM location, not RAM. This
may become evident if you then use the Monitor to inspect the Assembler's Object Buf-
fer, which normally lives below 3FFF. In this case, it would appear that the Assembler
has not assembled your program. In reality you would be looking at ROM, not RAM loca-
tions, and you would need to disable the Lower ROM as described in Section 1.5.20.

1.11 Summary of Commands

M aaaa nn Memory location & contents in Hex
aaaa = address
nn = new contents

ENTER for next location
M re-enters command

ESC Escape to Prompt & Cursor

$ aaaa letter Memory location & contents in ASCII
aaaa = address
letter = character from keyboard

ENTER for next location
$ re-enters command

| aaaa bbbb nn Insert
aaaa = address 1st byte insertion
bbbb = address highest byte to be moved

nn number bytes to Insert
D aaaa bbbb nn Delete
aaaa = address 1st byte deletion
bbbb = address highest byte to be moved
nn = number bytes to Delete
A aaaa bbbb cccc Area Move
aaaa = present start address
bbbb = present end address
ccce = new start address

28,

F aaaa bbbb nn

P aaaa bbbb/ENTER

Z aaaa bbbb/ENTER

N H/D number

J aaaa

T aaaa/ENTER

S aaaa bbbb/ENTER

Lon

uon

CTRL U nn

Fill

aaaa = start address of area to Fill
bbbb = end address of area to Fill
nn = value to be loaded into area

Print Hex/Graphics Dump

aaaa address of first byte

bbbb address of last byte (optional) or ENTER for open
ended screen display

Printer options on Hex display if end address given

1n

Disassembler
aaaa = start address
bbbb = end address (optional) or ENTER for open ended

screen display
Printer options if end address given.

Number Converter
H/D = Hex or Dec number
number = value to be converted

Editor Assembler
Access to AMMAS if resident in memory

Breakpoint
aaaa = address of Breakpoint

Jump & Execute
aaaa = address to Jump to

Breakpolint Restore
Restores last Breakpoint — executes automatically, giving
address

Register Display

Breakpoint Continue
Continues program execution after a Breakpoint

Trace
aaaa = address from which Trace starts or ENTER to start
Trace from PC value in Register display.

Hex or ASCIl Search

aaaa = start address

bbbb = end address (optional) or ENTER for default end
address of FFFF

Lower ROM access
Current enable state given. 0/1 to disable/enable ROM

Upper ROM access
Current enable state given. 0/1 to disable/enable ROM

Upper ROM Select

Current select number given

nn = new ROM number in Hex.
ROM nn is selected & enabled

Return to Basic

29

CTRL 1
CTRL 2
CTRL @

Screen Stream

Current AMMON Stream given

n = new Stream for AMMON to use (n is a single
decimal number)

Screen Mode 1
Screen Mode 2
Keyboard reset

30.

SECTION 2

The EDITOR ASSEMBLER “AMMAS” Version 1.1

2.1 General Description

The ASSEMBLER allows you to write your Machine Code program as a series of instruc-
tions (mnemonics) into a listing with line numbers in a similar fashion to a Basic listing.
The ASSEMBLER is completely self-contained, and operates in MODE 1 or MODE 2,
with a screen display that is automatically tabulated into fields to make your program
listing very easy to read. Entering your Machine Code listing is a quick and simple pro-
cess since the ASSEMBLER'S Line Editor contains facilities to provide Automatic Line
Numbering; to Renumber the listing; to Edit and alter any line; and to insert lines or
delete unwanted lines. A full-screen Copy Cursor is available operating in a similar
fashion to Basic.

The ASSEMBLER accepts all the Z80 mnemonics (plus a number that are not published)
and will accept both Decimal and Hex numbers, and an unlimited number of Labels,
each containing up to 6 characters.

To simplify programming, a number of Assembler Directives have been included to allow
you to define constants, variables, messages, and to set up data tables. These are ORG,
END, EQU, DEFL, DEFM, DEFS, DEFB and DEFW. The Directive PRNT allows screen or
printer output to be turned ON or OFF during the Assembly process. Arithmetic func-
tions allow the ASSEMBLER to perform addition or subtraction within operands, and any
combination of Label names, numbers or single ASCII characters is accepted. This
allows the ASSEMBLER to calculate the length of a message or data table, and to ac-
cept negative numbers.

When assembling your Machine Code program, the assembled code is written into
memory, and can be displayed on the printer, or on the screen with a PAUSE facility to
freeze the assembly process while you study the assembled listing on the screen. The
fastest assembly mode is with no output to either printer or screen, and in this mode,
1K of finished Machine Code is assembled in approximately 7 seconds. Full error detec-
tion is included, and when an error is found assembly stops with a sensible error
message. The whole line containing the error is displayed on the screen, and you are
left in the EDIT mode, ready to correct the error and re-enter the line into the listing.

The ASSEMBLER contains routines to LIST to a printer and to SAVE, LOAD and VERIFY
the program listing or the resulting Machine Code to Disc or Tape. The ASSEMBLER
automatically calculates the start address and length of any SAVED information, and the
assembled code will LOAD back via Basic.

To allow long programs to be assembled, the Source Code can be stored on tape or
disc in up to 26 linked sections. Each section is loaded into memory in turn during the
assembly process, and the resulting Machine Code can either be stored in memory, or
for very lengthy programs, can be sent directly back to tape or disc. This would allow
you to assembie up to 64K of code if you so required, and with discs attached, the
whole process is automatic. Using tape, detailed screen prompts guide you through the
assembly process.

31

All commands are available from the keyboard as single keystrokes, and Save/Load file
names can be defined to be available from a single keystroke. To simplify access from
Basic, the Assembler is set up as an RSX (i.e. it is accessible as an External Command),
and it fully supports External Commands to allow the use of Disc commands etc.
without the need to return to Basic.

2.2 Loading AMMAS

As the Assembler operates as an RSX, it is advisable to load it into a clean machine, so
clear the CPC464 by CTRL + SHIFT + ESC. If you have Discs attached, then enter the
direct command | TAPE.IN (ENTER) and type RUN" (ENTER) to load the Assembler from
cassette. AMMAS gives you the option of making a Back-up copy onto Disc or Cassette,
and if you have Discs attached, you should enter the direct command | TAPE.OUT if you
require a cassette back-up. You should also set the cassette write speed from Basic
before Loading the program.

A short Basic program loads the code of the Assembler and offers the option of making
a back-up copy onto disc (or cassette).

To allow for memory ‘grabbed’ from the memory pool by discs or other ROM or RSX
software, the Assembler is relocatable, and automatically relocates itself to below the
current HIMEM.

This creates a very simple method of running the Monitor and Assembler together by
loading the Monitor first and locating it to the highest available memory (press ENTER in
response to ‘Start Address’), and then loading the Assembler. It will then locate itself
below the Monitor. You can reserve memory above the Assembler for your own pur-
poses by lowering HIMEM before loading the Assembler. Remember that neither the
Monitor or the Assembler do a SYMBOL AFTER 256 in their Basic loader programs, so if
you do change HIMEM before loading either program, AND you wish to use further
definable graphics, then do a SYMBOL AFTER 256 from Basic BEFORE loading.

To load a back-up copy from disc, type RUN “ASS". The Assembler is Called and the
usual entry message displayed.

WARNING

THIS PROGRAM IS COPYRIGHT AND ONE COPY ONLY
may be made for your OWN PERSONAL USE.

It is illegal to sell copies or to give copies to friends.

2.3 Access to AMMAS

On loading, the Basic program sets HIMEM to a very low value which is passed to the
Assembler as the start of the Object Buffer. The Assembler is totally self-contained and
not dependant on any Basic, and is compatible with any Basic program that you wish to
load at the same time. If you alter HIMEM from Basic after loading the Assembler, you
must pass the new HIMEM value to the Assembler next time you access it. The normal
means of accessing the Assembler is by | ASS but if you have changed HIMEM, then
use | ASS,HIMEM + 1. The value of the start of the Object Buffer will be set to
HIMEM + 1, but the amount of memory available to the Assembler will be altered.

To make the most effective use of AMMAS, you should allow it to access as much

32.

memory as possible. You should make sure that HIMEM is set as high as possible
before Loading AMMAS which allows it to load as high as possible in memory. If you
need to use Basic while AMMAS is in memory, make sure that HIMEM is set as low as
possible. AMMAS will then use the area between these two HIMEM values.

On accessing AMMAS, you will be greeted by the following message:—

EDITOR ASSEMBLER
AMMAS 1.1
© Picturesque

NEW Text or CONTINUE with text (N/C)

If you have no Source Code in the Assembler, press N which will ensure that all the
Assembler’s buffers are reset. Any Source Code in memory will be lost in this case.

If you already have Source Code loaded into the Assembler, pressing C will change
nothing in AMMAS and allow you to carry on with your machine code programming.

2.4 THE EDITOR

AMMAS works in two distinctly separate parts. The EDITOR is used to enter and edit
your Source Code listings and offers a number of functions to simplify this process, for
example Auto line numbering, line re-numbering, and block copy and delete functions. It
is a Line Editor that always uses the bottom line of the screen to accept keyboard en-
tries, with screen scrolling when necessary. There is a Copy Cursor facility operating in
a similar way to Basic's Copy Cursor.

Having typed a Source Code listing into AMMAS, it can be saved to Cassette or Disc for
future use. But before a program represented by that Source Code listing can be run, it
must be converted into machine code by the ASSEMBLER. When you Load AMMAS into
your CPC464, both the EDITOR and the Assembler are loaded as one program, and the
EDITOR is automatically entered. The EDITOR controls the operation of the whole of
AMMAS, and contains commands to invoke the ASSEMBLER and the
Cassette/Disc/Printer facilities.

When you are entering or editing a Source Code listing, the Editor normaily produces
capital letters at all times, and will only allow lower case letters to be displayed between
quotation marks, when the SHIFT and CAPS LOCK keys operate in the normal way.

You can move the cursor through the Edit line at the bottom of the screen using the left
and right cursor control keys. The DELETE key deletes the character to the left of the
cursor, and moves the cursor one character to the left. To move the cursor quicklv to
the left hand end of the edit line, press CTRL and the left cursor key together.

2.41 AMMAS COMMANDS

All commands can be typed in character by character, but to simplify access to the
commands, they are all available by holding the CTRL key down while pressing one
other key as follows:—

33.

Command CTRL + Key

ASSEMBLES- C8r b S2in s A
ARSI S o s et +
BASIOI S B8 feait e e o B
(i B2 bl e e X
B B e T L P e A C
BELEFE =S e i T D
ERRTE el e s E
FILE Y SR F
]S oS R e R e iy \

EOADI S oSS 8 ¥ et A
EABEL SR i S K
MONITORS i e M
MOEIE fiset s IR e 1

MBBDE 2 s e spens 2

NEW: St shnn S MR N
RENUM Sysessny o Sws) Sk R
S e e i b S
o't S| A N e e e e v

Wherever possible, the initial letter of the command name is used to access that com-
mand, but where this is not possible (e.g. LIST, LABEL, LOAD) other keys have had to
be used.

Pressing CTRL plus one of the command keys shown above will always print the com-
mand name on the screen at the current cursor location, but for the command to be
recognised, it must be the first word on the Edit line. In other words it must be at the
left hand end of the bottom screen line. If you are unsure that the cursor is in the cor-
rect place, press ESC before accessing the command name. There must be a space
after the command name and before any operands. Using CTRL plus a key puts the
space there automatically.

2.4.2 Screen Display

The Screen display is always tabulated into fields to make your listings easy to follow,
and the SPACE bar acts as a TAB function when you are entering lines of Source Code.
The cursor control keys automatically detect the boundaries of the fields within the Edit
line. You can use Mode 1 or Mode 2 (see sections 2.4.12 and 2.4.13) with any choice of
Paper and Pen colours.

2.4.3 Entering a line of Source Code

The machine code program that you wish to write is entered into a listing in a similar
fashion to a Basic listing. Only one instruction per line is allowed, and the line must con-
tain a line number between 0 and 9999, and the operation name along with the relevant
operand(s). A full list of ZBO mnemonics in the correct form for the ASSEMBLER is
shown in Section 4. The program line may also contain a LABEL name that will identify
that instruction in the program. The screen display is divided into 4 fields as shown
below, starting at the left hand end of the line:—

Line number — 1st 4 characters plus 1 space
Label name — Next 6 characters plus 1 space
Operation name — Next 4 characters plus 1 space
Operands — Remainder of line

. " » .
§E 88 8888888888488 85888 088N IEN S A0 AN EEEAAFBEEFINBRAEERINAEQERIERRRRERDES

1045 LABEL LD HL,3FFFH
1030 LD DE,32748

34,

Use the <" and " —'" cursor controls to move the cursor along the bottom line. With
an empty line, the cursor will jump to the beginning of each field. Use the **«"" cursor
control to ensure that the cursor is at the left hand end of the line and type in a line
number, say 10.

As you type each character, it is displayed, and the cursor moves 1 location to the right.
Having entered the number, type SPACE. The cursor will move to the start of the next
field, the LABEL field. The SPACE key has several different functions depending upon
the cursor position in the line, and these will be explained later. Its main function when
entering a line is to advance the cursor to the start of the next field, clearing any
characters it passes. The cursor is now at the start of the Label Field. Most of the lines
you will enter will not require a Label, so type SPACE again, and the cursor will move to
the start of the Operation Field.

Pressing space a third time has no effect, as every line you enter must have an opera-
tion name, and the cursor waits for a name to be entered.

All programs you write must start with a definition of the address from which the pro-
gram is to be assembled. This is called the ORIGIN, and is abbreviated to ORG. Type in
ORG as the operation. Type SPACE, and the cursor will now move to the start of the
Operand Field. The ORG operation now requires the address that will be the address of
the first byte of the assembled program. For this example, enter 6000H. This represents
the Hex address 6000 (= 24576 decimal). For more information on ORG, see section
2.7.1, and for more about numbers, see section 2.6.2.

The bottom line of the screen should now be:—
Q010 ORG &000H

Before entering this line into the listing, use the =" and “« " controls to move the cur-
sor around the line. When the cursor is over a character, pressing an alpha-numeric key
will replace the original character with the one typed in, and move the cursor 1 location
right. The ' —" and "'« controls move the cursor to the next character left or right,
within a field, ignoring any spaces. If a field is empty, the cursor moves to the ap-
propriate end of that field.

To DELETE a character, move the cursor to the character to the right of the one to be
deleted and press DEL. The character to the left of the cursor is deleted and the cursor
moves into the deleted location. The rest of the line is not moved.

Now press ESC The message *BREAK" is displayed and the cursor moves to the left
hand end of the bottom line of the screen, which wilt have scrolled up. Pressing ESC will
abort the current Editor function (and cancel Auto line numbering) at any time. Press
Space again and nothing happens, as the cursor is waiting for a line number or a com-
mand name.

Re-type the whole ORIGIN line again, and experiment with the cursor control keys, the
SPACE and DELETE keys until you are familiar with the operation of these functions.
When you are ready re-type the ORIGIN line again, and this time press ENTER.

The screen will scroll, and the cursor will appear at the left end of the bottom line. The
line has been entered into the listing. At the time of entering a line into the listing,
checks are carried out on the contents of the line to ensure that each field ends with at
least one space. The spaces are essential for the ASSEMBLER to recognise the various

35.

parts of the line. If they do not appear in the line when you press ENTER, the line is not
entered, and the cursor appears over the unwanted character.

Section 4 shows a complete list of mnemonics in the form that the Assembler will
recognise, and it is important that you enter them in this form. They all conform to the
standard Z80 instruction set.

Using the four fields into which the screen is divided, always enter a line number; enter
a label name (maximum 6 characters) or leave the label field blank; enter the operation
name (LD CALL RET etc.) into the operation field; and enter any operands into the last
field. Where an operation has two operands, they must be separated by a comma e.g.

D020 1..D A, 20H

2.4.4 LIST

Move the cursor to the left hand end of the line and press CTRL and the\ keys
together. (The keys are one above the other.) The word LIST will appear on the screen.
Pressing ENTER will produce a listing in numeric line order starting with the lowest line
number in the listing. Ten lines of program are displayed whereupon the listing will tem-
porarily stop. Subsequent blocks of ten lines of listing are displayed by pressing SPACE,
until the end of the program is reached. After each block of ten lines, any other com-
mand may be used before continuing with the listing.

You can specify a line number after LIST, and the listing will start from that line number,
or the next line, if that line number does not exist.

For example LIST 500 will list from line 500 onwards, whereas in Basic it would only list
that one line. If you are used to the Basic form of LIST 500 — to list on from line 500, then
that form is also acceptable to AMMAS.

You may well have RENUMbered your Source Code listing in the process of entering it,
and be unsure of the current line number of a particular part of the listing. If this is the
case, and you know a label name close to the area you wish to list, you can use the List
command to list from that label name with

LIST XXXX where XXXX is the label name.

The Editor will search for the definition of that label name in the label field of your
Source Code, and list from the line containing the label definition. If the label specified
in the LIST command does not exist in your Source Code, no listing is produced.

If you have a printer connected to your CPC464, you can produce a printout of your
listing by typing a / after the LIST command name and before any line number or Label
name. For example

LIST /500 will list to the printer from line 500 to the end of the listing.
You can pause the printer listing by pressing ESC once, after
which, press SPACE to continue or press ESC again to ter-
minate the printer listing.

36.

2.4.5 EDIT

Move the cursor to the left hand end of the line and press CTRL and the E key together.
EDIT is displayed on the screen. Pressing ENTER now will display the first line of the
listing at the bottom of the screen. To EDIT a specific line, enter the line number after
the EDIT command and press ENTER. You can now use the cursor control keys to edit
the line and re-enter it into the listing by pressing ENTER.

To delete a line from the listing, type in the line number only and press ENTER.

2.4.6 AUTO

Move the cursor to the left hand end of the line and press CTRL and the key with +
engraved on it. AUTO will be displayed on the bottom screen line. When enabled, this
command automatically gives you a new line number each time you enter a line into the
listing.

The command form is:—

AUTO x, y
where AUTO is accessed from CTRL +
x = the starting line number
y = the step value (between 1 and 99)
x and y must be separated by a comma.

For example, AUTO 1000,5 will start numbering at line 1000 in steps of 5.
and AUTO 10 will start producing line numbers from line 10 with the
previously defined step value. If you have not yet defined a
step value, the default value is 5.

If AUTO line numbering is about to produce a new line number in excess of 9999, the
AUTO facility is aborted to avoid overwriting the start of your listing.

When a new line number has been displayed on the screen, the cursor is positioned at
the start of the Label field. If you do not wish to enter a label name, press SPACE once
to move the cursor to the start of the operation field.

To stop the AUTO facility, press ESC once. Re-entering AUTO again without specifying
any values will use the last step value with a line number following the last one produc-
ed by AUTO.

2.4.7 RENUM
Move the cursor to the left hand end of the Edit line and press CTRL and the R key
together. RENUM will be displayed on the bottom screen line.

This allows the Source Code line numbers to be renumbered.
The command form is:—

RENUM x, y, z
where RENUM is accessed from CTRL R
x = the step value
y = the line number from which to start renumbering
z = the new value to be given to line y (the routine actually gives a new
value of z+x to line y)

I n

37.

EXAMPLE a). RENUM 2,1000,2000 will give a step value of 2, and renumber from the
existing line 1000, giving that line a new number of 2002. Subsequent line numbers,
through to the end of the listing, will be renumbered in steps of 2.

EXAMPLE b). RENUM 2,1000 will renumber from line 1000 to the end of the listing in
steps of 2.

EXAMPLE c). RENUM 2 will renumber the whole listing in steps of 2.

In all cases, if the RENUM parameters would create a line number greater than 9999,
the step value is reduced by 1 and the renumber is executed again automatically. In Ex-
ample b). if the step value has reached 1 and a line number greater than 9999 would be
produced, the whole listing is renumbered in steps of 1. If, in Example a). the step value
reaches 1 and a line number greater then 9999 would be produced, the value of z is
reduced and the renumber is attempted again with a step value of 1 until it is suc-
cessful.

In all cases, renumbering is effective from the chosen line in the listing through to the
end of the listing.

2.4.8 DELETE

Move the cursor to the left hand end of the Edit line and press CTRL and the D key
together. DELETE will be displayed on the screen. This command allows a block of lines
to be deleted from your Source Code listing.

The command form is

DELETE x, y

where DELETE is accessed from CTRL +D
x = line number of start of block
y = line number of end of block.

Press ENTER, and the block of lines from x to y INCLUSIVE will be deleted.

2.4.9 COPY

Move the cursor to the left hand end of the Edit line and press CTRL and the C key
together. COPY will be displayed on the screen. This command will copy a block of
Source Code into another part of your listing. The original block of listing is not deleted.

The command form is

COPY x, vy, 2

where COPY is accessed from CTRL +C
X is the first line number of the block to copy
y is the last line number of the block of copy
z is the new point in the listing to copy to

If Z is between X and Y then a Syntax Error is generated.

If X > = Y then a Syntax Error is generated.

If a line Y exists, that line is included in the Copy.

If a line Z exists, then the block is inserted AFTER it.

If a line Z does not exist, then the block is copied to where line Z would be.

The listing is not re-numbered, and you will have duplicate line numbers.

38.

2.410 NEW
This command clears the Text Buffer of all Source Code, clears the Label Table, and
resets the Assembler to the same state it was in when you first loaded it.

With the cursor at the left hand end of the bottom line, press CTRL and the N key. The
message that you saw when you first loaded the Assembler will appear. if you typed
NEW by mistake you can now press C and nothing will be lost. If you want to erase the
entire program listing, press N.

2.4.11 CLEAR
This command is used to Clear specific parts of the Assembler’s buffers and tables.

Move the cursor to the left hand end of the Edit line and press CTRL and the X key
together. CLEAR will be displayed on the bottom line. You must now specify one of four
single parameters to indicate which part of memory is to be cleared.

The command forms are:—

CLEAR L This clears all the labels from the label table, and resets the label
table to the # label only.

CLEAR O This clears the Object Buffer to zero length. (use the letter O, not
the number zero)

CLEART This clears the Text Buffer of your current Source Code, and
enables a protection system on the labels currently in the label
table. This is useful where you need to assemble two separate sec-
tions of Source Code, with the second section having access to the
labels created by the first section. The ASSEMBLE command will
clear the label table back to its protected size (normally just the #
label) before it starts to assemble code.

The protection can be cleared by the following commands:-
CLEAR P; CLEAR L; NEW

CLEAR P This clears the protection applied by CLEAR T to the label table. All
the labels remain in the label table, but without protection.

2.4.12 MODE 1

Move the cursor to the left hand end of the bottom screen line and press CTRL and 1
together. MODE 1 is displayed on the screen. This command (and MODE 2 below)
change the screen display mode.

If required, two operands may be appended to this command to define the INK colours
used by PEN and PAPER. The Assembler always uses PEN 1 : PAPER 0 and the colours
associated with INK 1 and INK 0 are set to the values given. The first operand is the
PEN ink and the second operand is the PAPER ink. The two must be separated by a
comma. The given values are masked to be within the range of O to 26, and the Border
colour is set the same as the Paper colour.

e.g. MODE 1 26,0 gives white ink, black paper.
39.

2.4.13 MODE 2
This command form is identical to MODE 1 above, but sets Screen Mode 2. PEN and
PAPER inks can be specified if required.

2.4.14 BASIC

This command allows you to return to BASIC from AMMAS. Move the cursor to the left
hand end of the Edit line and press CTRL and the B key together. BASIC will be
displayed at the bottom of the screen. Press ENTER and you will return to Basic, with
the usual ‘Ready'’ message.

To re-enter the Editor Assembler see section 2.3.

The Basic Loader program for AMMAS will probably still be in memory, but as AMMAS
is completely self-contained, you can safely use the Basic command NEW to remove it.
You can also use your own Basic programs while AMMAS is in memory, but remember
that if you alter the value of HIMEM you must tell AMMAS its new value when you re-
access the Assembler. You should use the External command | ASS,HIMEM + 1.

If you need to Load or Save while in Basic, you will have to raise HIMEM to give Basic
enough room for its Tape/Disc buffer. AMMAS sets HIMEM to a very low value, and
Basic will give a ‘‘Memory Full'" error if you do try to use Tape/Disc commands without
altering HIMEM.

2.4.15 EXTERNAL COMMANDS

When additional ROM or RSX software is in your CPC464, you can access this software
through External commands with the form | NAME where NAME is the command name
(e.g.] MON gives access to AMMON). The Editor Assembler also contains facilities for
accessing External commands without the need to return to Basic to do so.

Move the cursor to the left hand end of the Edit line, and type SHIFT + @ to give the
BAR symbol followed immediately by the external command name. A maximum of 5
numeric or string operands can also be specified. Decimal or Hex numbers are
accepted, but Hex numbers must be in the AMMAS format (i.e. 4000H : see section
2.6.2).

If you add operands to the External command, follow the command name with a
comma. String operands are typed out in full, and not accessed via a variable as in
basic.

e.g. | ERA,FILENAME.BIN to erase a file from Disc
| REN,FILE2.BIN,FILE1.BIN to rename a Disc file.

If a string operand starts with a number character, you should enclose the whole string
operand within quotes to avoid any confusion over the operand being treated as a
number by AMMAS. The quotes will not be counted as part of the string.

e.g. |REN, “FILE2.BIN”,“FILE1.BIN” has the same effect as the above
example.

40.

2.4.16 COPY CURSOR

When entering a listing, or during Editing, a full screen Copy Cursor is available exactly
as in Basic, using SHIFT with the arrow keys to move the Copy Cursor, and COPY to
transfer the relevant character into the Edit line.

When a Space is copied into the Edit line at the bottom of the screen, the Main Cursor
in the Edit line does not Tab across to the next field, but simply writes a single Space
into the Edit line. Because of this, you could find that a line of Source Code is rejected
by the Editor because it does not conform to the expected field format.

As the Editor of AMMAS always operates in an “‘overwrite’’ mode as opposed to an
“insert”” mode, the Copy Cursor offers a simple way of inserting characters into a line of
listing, for example into a message line. List the Source Code so that the line requiring
an insertion is on the screen. Use the COPY CURSOR to copy from the line number up
to the insertion point into the Edit Line and then type in the insertion from the keyboard.
Finally, use the COPY CURSOR to copy the remainder of the line from the screen listing
and ENTER the new line into the listing.

2.4.17 Comment lines
Comments can be inserted into your listing, in a similar way to a REM line in Basic.

Enter the Line Number; move the cursor to the start of the Label Field and enter a semi-
colon.

Using the **—"' cursor control, move the cursor to the start of the operand field and
enter your comment, enclosed in quotes, exactly as you would enter a message line.
(See DEFM). The semi-colon identifies the line as a comment, and the Assembly routine
ignores the whole line.

2.4.18 ESC Key

The ESC key can be used at any time to cancel or stop most functions; (e.g. during
assembly, listing, display of label table, disc/cassette commands or to cancel unwanted
commands before execution). Using the ESC key while typing in a command or a line of
Source Code will cause a BREAK straight away, but if a command is running when ESC
is pressed, that command freezes and the cursor appears at the bottom of the screen.
Pressing SPACE allows the command to continue and a second press on ESC will cause
a BREAK.

2.4.19 Resetting the keyboard

If you return to Basic, the command name expansion strings will still operate, and will
be available on re-entry to the Assembler. If, however, you have changed any of the
main keyboard definitions in Basic, you can reset the Assembler keyboard by CTRL +
@-. This will re-define all the key expansion strings, and will set the FILE name (see
section 2.5.1) to a null string.

2.4.20 MONITOR access

If you loaded the MONITOR (AMMON) program as well as the Assembler, you can
directly access the Monitor in one of two ways. (See Section 3 for loading both
programs together).

41.

Firstly, as the Monitor is set up as an RSX, you can use the external command | MON
and press ENTER.

Secondly, if you press CTRL and the M key together, you will see MONITOR appear on
the bottom screen line. Press ENTER to gain access to AMMON.

2.5. CASSETTE AND DISC COMMANDS

It is possible to Save thé contents of both the Source Code buffer (your program listing)
and the Object Code buffer (your assembled program) directly from the Assembler.
There is no need to specify a start address or length as the Assembler calculates this
automatically.

On loading, the Assembler checks to see if DISCS are present, and all cassette based
routines will work with the Discs if they are available.

If you wish to use cassettes while the Disc interface is connected to your CPC464, you
should use the External commands | TAPE.IN. | TAPE.OUT or| TAPE to re-instate the required
cassette facilities. Those external commands maintain their effect until countered by the
relevant | DISC external commands. Full details of these external commands are given
in Amsoft's Disc User Instructions. A 2K buffer for Cassette/Disc commands is reserved
within AMMAS.

N.B.
It is possible to Load and Save a Source Code file from Basic, but if you do, you will
either corrupt the Assembler, or the Assembler will not recognise the Source Code.

CASSETTE SYNTAX

The syntax of the cassette commands is very similar to Basic cassette commands. You
can LOAD, SAVE and VERIFY Source code or Object code by specifying a file name of
up to 16 characters long, and the file name must be enclosed in quotation marks (SHIFT
+ 2). To change the speed at which the Save is executed, you must return to Basic
(see Section 2.4.14) and use SPEED WRITE 0 or SPEED WRITE 1 from Basic. You can
then re-access AMMAS and all further Saves will operate at the Speed you have
selected.

DISC SYNTAX

When using Discs, the file name specified can contain optional User, Drive and Type
parts along with the compulsory Name of up to 8 characters, and the syntax is the
same as in Basic. The whole file name, including any optional parts, must be enclosed
in quotation marks (SHIFT + 2).

When Saving or Loading with Discs, the Type part of the file name will default to **.SCE""
for Source code, or ““.BIN"' (Binary) or **.COM" (CP/M) for Object code. However, if you
specify a different Type part, then that will be used in place of the default characters.
All Saves are defined in their header as Unprotected Binary files, except for *'.COM"
files which are unprotected ASCII.

2.5.1 FILE
You can define a file name for use in Cassette/Disc commands that will then be

42,

available from a single key.

Move the cursor to the left hand end of the line, and press CTRL and the F key
together. FILE will be displayed on the bottom line of the screen. Type in the file name,
including the opening and closing quotation marks, and press ENTER. The file name will
be checked for syntax, as if it were a cassette command with a maximum of 16
characters. Spaces are ignored. If you are using Discs, then a full Disc syntax check is
carried out by the LOAD/SAVE/VERIFY commands. Also, if you are using Discs, a Type
part is not added by the file command, but is added by the LOAD/SAVE/VERFIY
commands. If you wish, you can specify a type part within the FILE name you define.

To access the defined FILE name, hold down CTRL and Press the 4 key (it has $
engraved on it) and the file name, complete with quotation marks is printed on the
screen. For example, to Save a file with the default FILE name, use CTRL + S for SAVE
and CTRL + 4 for the file name.

2.5.2 SAVE

With the cursor at the left hand end of the Edit line, press CTRL and the S key together.
SAVE will be displayed on the screen.

Type in a file name (or use CTRL + 4 if you have defined a FILE name) and make sure
that the file name ends with quotation marks (SHIFT + 2).

You must now specify whether you want to Save Source code or Object code. To Save
Source Code that you have entered, follow the file name with T (for Text) and to Save
your assembled Object Code, follow the file name with either B (for BINARY Code) or
with C (for CP/M COM files).

Then press ENTER.

SAVE “name”T Saves Source Code.
SAVE “name”B Saves Object Code as Binary Code.
SAVE “name”C Saves Object Code as CP/IM *.COM" file. (Disc only)

If you are using cassette routines, you will see the usual cassette messages.

If you are using Discs, you will see some new messages. If you Save a file to Disc from
Basic, and a file of the same name is already on the Disc, it is automatically made into
a Back-up version, with the Type part **.BAK". However, the Assembler gives you the
option of making a back-up, or of over-writing the old file, or of abandoning the Save to
choose a new file name.

So, when Saving to Disc, the Assembler searches the Disc Directory to see if a file of
the name specified already exists, and the first new message you see tells you that a
Search is being made. If a file of the same name does exist, a message will tell you so,
and will ask you:—

Overwrite :Backup: Abandon (O/B/A)

You must respond with SHIFT plus the letter O or B or A. The SHIFT has been added
to make your keypress a definite and consious choice. This should help to eliminate
overwriting files by mistake. Having made your choice, the Save will go ahead.

If the file name specified in your SAVE command does not exist on the Disc, you will be
told so, and the Save will go ahead immediately. With Saves to Disc, you do not need to
specify a Type part, as Source code is automatically given **.SCE", and Object code is
given “.BIN" or *.COM".

43.

OBJECT CODE

The Assembler always stores the code it assembles in the Object Buffer irrespective of
the ORG address supplied in the Source code. (A fuller explanation is in section 2.6.1).
When you Save the Object code to Disc, the code is Saved from the Object buffer
(probably not its final run location), but the Header information on the disc is made to
contain the correct information about the Origin location. This means that you can Load
that code back into memory from Disc with the Basic command.

LOAD “name”
and it will Load to the location given as the ORG in your Source code.

However, if you Save Object code to Casselte, there appears to be no way of creating a
faked header containing the ORG location. For this reason, you must load Cassette
based Object code from Basic with

LOAD “name”,address where address = your ORG location.

This will force Basic to Load it to the correct address, but you must keep a note of the
ORG location specified in your Source Code.

2.5.3 LOAD
The Assembler will ONLY load a valid SOURCE CODE file that has been previously
Saved by the Assembler. Any other file will give you a "‘Wrong file type' error.

With the cursor at the left hand end of the EDIT line, press CTRL and the L key
together. LOAD will be displayed on the screen. Type in a file name (or use CTRL + 4 if
you have already defined the FILE name). Press ENTER, and the file will be loaded.
Loading from Cassette will produce the usual cassette messages, and loading from Disc
does not produce any messages.

The command form is

LOAD “name”
Before the new file is loaded, the Assembler will clear any existing Source Code from its
buffer, and clear the label table to a null table. In other words, it will NEW the
Assembler.
If you wish to retain the labels from a previous Assembly so that a new section of
Source code can have access to those labels, you can simulate the CLEAR T command
(see section 2.4.11) in a Load command by using the form

LOAD “name”C
This automatically does a CLEAR T before loading to protect the existing labels.
You can also APPEND a section of Source Code onto the end of the Source code
currently in memory. If there are any labels currently in the label table, they will be

deleted, and the new Source code will be added to the end of any Source code already
in the buffer. The command form is

LOAD “name”A
44,

Having Appended a section of Source code, you should RENUMber the whole listing to
allow editing of the full listing, and you should also ensure that there is only ONE ORG
and ONE END statement in the entire listing.

When loading from DISC, the Assembler will assume a Type part in the file name of
. SCE" unless you have specified a Type part in the LOAD command.

When loading from CASSETTE, LOAD"" will load the next Source file on the tape.

2.5.4 VERIFY

This command does not exist in Basic, but the Assembler allows you to Verify a Saved
file against memory. The Verify command knows from the file's header whether it is
Source Code or Object Code, and checks the appropriate buffer.

With the cursor at the left hand end of the bottom screen line, press CTRL and the V
key together. VERIFY will be displayed on the screen. Now type in a file name (or use
CTRL + 4 if you have defined a FILE name) and press ENTER.

The command form is
VERIFY “name”

If you are reading from cassette, the screen messages will imply a LOAD, but the
Assembler is only checking the information loaded against the values held in memory.

If you are Verifying from Disc, and do not specify a Type part in the file name, the Verify
command will always default to “.SCE". Therefore, to Verify an Object code file
(normally Saved as **.BIN"") you must specify the “.BIN" in the file name as follows

VERIFY “name.BIN”

2.5.5 External DISC commands

External commands have already been dealt with in detail in section 2.4.15. If you need
to REName or ERAse a Disc file, or call up a DIRectory, you can do this from the
Assembler without the need to go back to Basic.

However, if you need to CAT a Disc, you will have to return to Basic (CRTL + B) to do
this.

2.6 The ASSEMBLER

The ASSEMBLER converts the mnemonics entered in the listing into the Hex code that
the CPU can understand. The mnemonics in the listing are called the Source Code and
the assembled Hex code is known as the Object Code.

The ASSEMBLER makes two passes through the listing. The first pass checks for
correct syntax; calculates the values of the Labels and creates a table of those values:
and creates an outline Object File. The second pass calculates fully all the numeric and
Label operands, and calculates the offsets of relative jumps. It is not possible to
separate the two passes. The results of the second pass can be displayed either to the
screen or to a Printer.

45.

The Editor/Assembler resides at the top of memory and sets HIMEM to a very low value
as described in Section 2.3, and all its tables and buffers are allocated in the space
between HIMEM and the bottom of the Assembler. This allocation of table/buffer space
is transparent to the user, which simplifies programming, and a *“Memory Full" error is
given if two areas are in danger of overwriting each other.

As you enter lines of Source code into the Editor, the Source code buffer expands
downwards below AMMAS, and the label table expands downwards below the Source
Code during the Assembly process. The Assembled code is stored in the Object Buffer
which starts immediately above HIMEM and expands upwards, towards the label table.

2.6.1 The Object Buffer

To allow you to Assemble code that could ultimately reside in any part of memory, and
also to give the Assembler the maximum amount of working space at all times, the
Assembled code is ALWAYS stored in the Object Buffer, irrespective of the ORGIN
location specified in your Source code.

= T"DBIELT) { H 1 1 5
i :basic. BUFFER > { source | ! ! screen '
i) { code | AMMAS isysteai ___________i
T raaipiing ' b { i idata | !
! rom |) ¢ labels | ! | rom .i
! ') (o H) H

— 1

! '

HIR S { € €< C LS CLCCLCS

“Reseabled Source Code
stored in Object Buffer

The Assembler will calculate all addresses during assembly based on the ORIGIN
address supplied in the Source code; the code is simply stored in the Object Buffer,
ready for Saving when the Assembly process is complete. The Machine Code produced
by the Assembler is designed to run at the memory location given in the ORG command,
which is not normally the Object Buffer area, and the machine code would be loaded
back to the correct location using the Basic Load command. At that stage, the Editor
Assembler would not be required in memory, thus freeing a large part of the memory for
your own program.

When the Assembler is first Loaded, HIMEM is set to a very low value, and this value is
passed to the Assembler for it to use as the start of the Object Buffer. If you return to
Basic from the Assembler, and alter the value of HIMEM (which you will need to do if
you want to Load a Basic program) then you must tell the Assembler the new value of
HIMEM next time you access it. To do this, access the Assembler using,

| ASS,HIMEM + 1. If you simply use | ASS, then the Assembler will carry on using the old
Object Buffer, which will probably corrupt your Basic program.

46.

The Assembler will store the new HIMEM address, and will automatically define a Label
with that value. This label is given a single character name of ** # "'. Every time you
Assemble a piece of Source Code, you will always find this label at the end of the Label
Table. For most of the time you will not need to use the # label, but, if you load both
the Monitor and the Assembler together, you can use it as your Origin and save time on
Saving and Loading while you test your Machine Code. See Section 3 for more details.

2.6.2 Numbers

The ASSEMBLER will accept Decimal or Hex numbers, and will default to Decimal.
Numbers must start with a numeric digit, i.e. 0 to 9, and Hex numbers must have a
suffix H. If a Hex number starts with a letter (A to F) it must be preceeded by a zero, or
the ASSEMBLER will treat it as a Label. i.e. D000 Hex must be written 0DO00OH, and FF
Hex as OFFH.

Decimal numbers need no suffix. Decimal numbers between 0 and 65,535 are evaluated
to their corresponding Hex value. Decimal numbers greater than 65,535, up to 99,999
are evaluated, but the carry produced is ignored. (i.e. 65,536 is evaluated to 0000 Hex
and— 1 is evaluated to FFFF Hex).

2.6.3 ASCII Characters

Single ASCII characters are accepted as operands, providing that the character is
entered within normal quotes (Shift and 2). This type of operand is accepted by all
operations that can accept a numeric operand, except the Assembler Directive ORG.

When you type the first quote, the ASSEMBLER automatically produces lower case
letters unless you use the Caps Shift.

Example:— LD A, “a” produces the code 3E 61.

2.6.4 Arithmetic
Addition and Subtraction within an operand is allowed. The sum or difference of Label
values, numeric values or ASCII characters in any combination is accepted.

Examples:— () LD A, “A" + 20H produces the code 3E 61
(i) LD HL, LBL2 — LBL1 calculates the difference between
Labels.

(i) LD DE, START + 100H adds a fixed offset to a Label.

2.6.5 Labels

In Assembly language programming, Labels are used to indentify points in the program.
Whereas in Basic you would GO TO a line number, in Assembly language, you would JP
(jump) to a Label name. The line numbers in your Source code listings are only there to
maintain the correct order of the instructions and to allow editing.

You can also use labels to store the values of constants and variables. For example, to
use the Firmware ROM routine to print on the screen, you would CALL OBB5AH. To
make your Source Code easier to understand, you could define a label (e.g. TXTOUT)
with a value of OBB5AH and then CALL TXTOUT. Using this method also allows you to
make changes very quickly by altering the definition of a label. All subsequent uses of
that label will also be altered to the new value. Section 2.7.3 and 2.7.4 give details of
using labels as constants and variables.

47.

All Labels have a two byte, 16 Bit value. Label names can be defined with a maximum
of 6 characters. They must start with a non-numeric character and cannot contain
spaces. All register names and abbreviations for conditions are reserved names, and
cannot be used as a Label name, as the Assembler will try to evaluate them as a
register or condition. The first character of a label name must not be a semi-colon, or it
will be recognised as a comment line. (See section 2.4.17), nor must it be a */' as that
could be misunderstood as a printer command by LIST. To avoid any possible confusion,
always start a label name with a LETTER.

ORDINARY LABELS

Label names put into the Label Field and followed by an operation other than EQU or
DEFL are given the value of the current program address for that instruction. They are
not re-definable, and can only be defined once in a program. An ordinary label used as
an operand must be defined somewhere in the program listing, but can be defined in a
line after it is used as an operand. This allows forward jumps to a Label name. Any
Label can be used as an operand, providing that its value is within the limits for that
operation.

The label table display at the end of an assembly pass can be inhibited, or can be called
up independately of an assembly pass. The label table is always created by an assembly
pass, and this command only controls its display.

LABEL With the cursor at the left hand end of the bottom screen line, press
CTRL and the K key. LABEL is displayed on the screen. Pressing
ENTER now will display the label table to the screen (unless it has
been disabled). The screen will scroll through to the end of the table
display and can be paused by ESC.

LABEL 0 Press CTRL and K as above, followed by the Zero key. This will
disable the label table display.

LABEL 1 Press CTRL and K as above, followed by the 1 key. The label table
display will be enabled and displayed on the screen.

LABEL / Press CTRL and K as above, followed by the / key. If the label table
display is enabled, the table will be printed on the printer.

You can interrogate the label table to find the value given to any specific label by
pressing CTRL and K as above, and then typing the name of the label. The value in Hex
of that label will be displayed on the screen.

e.g. LABEL LBL1 will display the value of LBL1.

2.6.6 Label Slicing

All labels are stored as a 16-BIT value even if they are defined as having a value of 255
or less. If their value is 255 or less, then the Assembler will treat them as either 8-BIT or
16-BIT, depending upon the instruction with which they are used.

e.g. If a label, LBL1 is defined as having a value of 80H, it will be stored as
0080H, and could be used as an 8-BIT value, by
LD A, LBL1

or as a 16-BIT value by
LD HL,LBL1

48.

If its value is defined as greater than 255, it will always be treated as a 16-BIT number.

It is possible to access the high and low bytes of a label value separately by preceeding
the label name when it is used as an operand by < to access the HIGH byte, or by >
to access the LOW byte.

EXAMPLE. A label has been defined thus:
LBL1 EQU 5CBOH

The instruction LD A < LBL1
will take the HIGH byte of the label, and is equivalent
to LD A,5CH

The instruction LD A> LBL1
will take the LOW byte of the label, and is equivalent
to LD A, OBOH

The direction in which the < or > is pointing indicates which byte is
taken.

The label does not have to be defined by EQU, and any label can be 'sliced’ in this way.
It is important to remember that ALL label names should start with a LETTER. Never
start a label name with ‘> or '<' as the Assembler will produce errors when that label
name is used as an operand.

2.6.7 JRIDJNZ
The relative offsets for these two jump instructions can be defined in a number of ways.
Normally you would use a label as the operand,;

JR LOOP
or JR Z,LOOP for a conditional jump

where the Assembler will calculate the correct forward or backward offset.
You can use a numeric offset if you wish, but this would cause errors in your program if

you change the Source code within the limits of the jump without changing the JR
instruction.

JA- 2]

] jump forwards 2 bytes
JR +2]
JR -2 |

}" jump backwards 2 bytes
JR OFEH |}

2.6.8 Assembling Source Code

To Assemble the Source Code that is currently in the Source code buffer, make sure
that the cursor is at the left hand end of the bottom screen line, and press CTRL and
the A key together. ASSEMBLE will be displayed on the screen. If you press ENTER, the
Source code will be Assembled into the Object Buffer, and there will be no output to the
screen or printer until the end of the Assembly. |f you have enabled the label table

49.

display, then the label table is shown on the screen, but if it is disabled (LABEL 0) then
you will see the Assembler's cursor re-appear at the bottom of the screen when
Assembly is complete.

If you require a full Assembly listing on the screen, then having pressed CTRL and the A
key to display ASSEMBLE on the bottom screen line, you should then press the S key on
its own followed by ENTER. The Assembler makes two passes through the Source Code
listing and the first pass will not produce any screen output. There will be a delay before
anything is printed on the screen which will vary according to the length of your Source
Code. The second pass of the Assembler will produce a fully assembled listing
consisting of the current program address in Hex, the Hex code produced and the line
of Source code relating to that code. Producing a screen output will obviously slow
down the assembly process quite considerably. The screen output will continously scroll
up the screen throughout the assembly process. If there is a part of the listing that you
wish to study, you can freeze the Assembly process by pressing ESC once. The
Assembler’'s cursor will appear on the bottom screen line, and the Assembler will wait
indefinitely until you either press SPACE to continue the Assembly process, or until you
press ESC again to abort the assembly process.

You are more likely to want to produce a fully assembled listing onto your printer rather
than the screen, and to achieve this, press CTRL and the A key to display ASSEMBLE
on the screen, then press the / key (this key also has ? engraved on it) followed by
ENTER. As with screen output above, there will be a delay while the Assembler makes
its first pass through the Source Code, then the printer will be accessed to produce the
assembled listing during the second assembly pass. If you press the ESC key once
during the assembly process, the Assembler will stop and wait for either SPACE to
continue or a second ESC to abort.

With both screen or printer output, the label table is displayed if it is enabled (LABEL 1)

To summarise, ASSEMBLE produces no screen or printer output.
ASSEMBLE S produces screen output.
ASSEMBLE / produces printer output.

The Object code is always produced, and stored in the Object Buffer.

2.7 ASSEMBLER DIRECTIVES

These are not operation names recognised by the CPU and are included to simplify the
process of writing machine code. They are used by the ASSEMBLER, at assembly time,
to create messages, data bytes, etc. They are entered into the listing, with a line number,
by writing the Directive name into the operation field. They can be identified with labels
and all require an operand except END.

Two of these Assembler Directives are compulsory in every program you write; namely
ORG and END. An error message is produced if either is missing.

2.7.1 ORG

Defines the address of the first byte of the assembled code and therefore the base
address from which all other label values are calculated. It must be defined in the listing
before any other instruction. Comment lines can precede it, but it is good practice to
define it in the first line you enter.

50.

The Hex code produced by the ASSEMBLER is written into the Object Buffer from
where it is Saved to cassette. Label # defines the start of this Buffer, and is set by
the ASSEMBLER. The operand for ORG can be a number; a Label, so long as it has
already been defined; or Label # . Only ONE ORG per program is allowed.

If a program is assembled with ORG # , the code in the Object Buffer is correctly
assembled for the Buffer addresses, and can be run there (See Section 3). Any other
ORG address will produce code in the Object Buffer designed to run from a different
address.

2.7.2 END
This signifies the end of the program. Although there may be lines of program listing
after the END statement, the ASSEMBLER will ignore them.

2.7.3 EQU

This Assembler Directive assigns a value to a Label name. It does not put any code into
the Object Buffer. Labels are normally given a value equal to the current program
address (based on your ORG), but EQU and DEFL will force a label to have a specified
value. Once a Label is assigned a value by EQU, it cannot be re-defined. Any numeric
value, ASCII character or other Label name is accepted as an operand, but if a Label
name is used as an operand, it must already have been defined in a previous line In
the listing.

The Label name is put into the Label field; EQU is put into the operation field and the
operand in the operand field. A special operand for use with EQU and DEFL only is § i.e.
LABEL EQU $. This gives the label a value equal to the current program address.

2.7.4 DEFL

This Assembler Directive also allows you to define the Label value, but it also allows you
to re-define the value as often as you wish within a program. At each new definition, the
previous value is lost. A Label is only re-definable if its first definition in line order in the
listing is by DEFL. Subsequent definitions can be by DEFL or EQU, but it remains re-
definable. You cannot change an existing ordinary Label into a re-definable one. Having
established a Label name using DEFL, you cannot use the same name for an ordinary
Label to identify part of the program. It can only be re-defined by DEFL or EQU.

Example:

O001 3

Q010 OrRG 70O00H

0020 LBL1 neEFE R

OO3Z0 LD A.LBL1

0040 3

QOT0 5 R HE FHHEH I I35
QO&0 3

Q070 3 "Rest of program"

OO8O 3

QOO 5 HRHHH R 3033369633333 3
0100 3

0110 Ij.BLl DEFL LBL1+20H

1.

In the above example, line 20 sets LBL1 to the ASCII value of “A"" which is 41 H, and
uses that value in line 30. Later in the program, LBL1 has 20 H added to it, which gives
the ASCII value of "'a", which is used in line 120.

When using other Label names as operands with EQU and DEFL, those Label names
must have been previously defined in the listing.

As EQU and DEFL Labels are not strictly part of the program, and do not appear in the
assembled code, they have no address related to them, and so during the assembly
display, their value is shown in the left hand column, where you would expect to see an
address.

At the end of the Assembly procedure, a table of Label values is produced, and DEFL
labels are flagged by an asterisk.

2.7.5 DEFB

Assigns a value to the single byte at the current assembly address. The value must be
less than 256 (0100H) and the operand can be a number, a single ASCII character, or a
Label with a value less then 256.

It is useful for defining data bytes within a program.
Multiple operands are allowed, separated by commas, e.g.
DEFB 10,0E3H,255,3CH

The assembled value of each operand is displayed to the screen or printer at assembly
time (if screen or printer output is requested). The first operand value is displayed in the
normal position along with the program address and the line from the listing. The
second and subsequent operand values are displayed on the next line.

2.7.6 DEFW

Assigns a value to the next two bytes at the current assembly address. The value is
stored with the LSB first, followed by the MSB; i.e. in the normal way for a two byte
value.

It is also useful for defining data bytes within a program.
Multiple operands are allowed, separated by commas, e.g.
DEFW 40000,7C80H,3CH,LBL2
The assembled value of each operand is displayed to the screen or printer at assembly
time (if screen or printer output is requested). The first operand value is displayed in the

normal position along with the program address and the line from the listing. The
second and subsequent operand values are displayed on the next line.

2.7.7 DEFS

This creates a number of blank bytes from the current assembly address. The space
created has its byte values set to 0. Its operand can be a number or a label name,
providing that the label has been defined in a previous line in the listing.

52.

You can use DEFS to create space for tables or buffers that your program will use
when it is run. (e.g. Disc/cassette buffers). You can also use it to create variable
amounts of blank space. For example, your program may require that a certain section
of code starts on a page boundary. (A page is 256 bytes, and page boundries are
muitiples of 256 bytes. The LSB of the address of a page boundary will always be zero;
e.g. 7F00 Hex). To ensure that a given instruction in your program does start on a page
boundary, use the following line of Source code before that instruction:—

line no. PAGE DEFS 0100H — > PAGE

The label PAGE is the current program address, e.g. 7D5A Hex.
Using label slicing, > PAGE is the LSB of this address. e.g. 005A Hex.
So the blank space created is 0100H — 005AH = 00A6H.
The next instruction will be at PAGE plus the DEFS value
which is 7D5AH + 00A6H = 7EQQOH

This DEFS instruction will always ensure that the next instruction starts on a page
boundary, irrespective of your ORG, and of any changes you make to the Source code
before the DEFS.

2.7.8 DEFM

Allows messages to be entered into the listing as a string of ASCI| characters. DEFM
calculates the Hex code for each character, and puts that code into the current Object
Buffer address. The operand must be a string of ASCII characters enclosed within
quotes. When you type the first quote into the listing, the EDITOR automatically displays
lower case characters unless CAPS SHIFT is pressed. When the cursor is positioned
between string quotes, lower case letters are automatically produced. The first
character of the operand must be a quote.

2.7.9 PRNT

Allows screen or printer output to be turned on and off within an assembly pass. PRNT
is entered into the listing (in the operation field) at the points where the display is
required. It does not affect the machine code that the ASSEMBLER produces.

If, for example, you have altered part of a listing, and require a print out of the section
that has been altered, you can enable screen or printer output for that part of the
Assembly process only, without sacrificing the increased speed of having no output for
most of the assembly process.

PRNT S turns on screen output from the next line in the listing.
PRNT / directs the Assembly output to the Printer.
PRNT OFF turns off the Print facility.

The operands S,/, OFF must be placed in the operand field in the Source Code. Use
ASSEMBLE (followed by ENTER) to give no screen or printer output until the PRNT
directive requests it.

53.

2.7.10 ENT

Defines the ENTry point of your program. It requires one operand, which can be a
number or a label. When the assembled code is saved to Disc, the ENT address is
loaded into the file header as the Run address so that the resulting Code can be loaded
and run from Basic with RUN ""name’’. If no ENT address is specified in your Source
Code, then the ORG address is taken as the ENT address and put into the file header.
As file headers cannot be overwritten when saving to cassette, (see Section 2.5.2 on
Object Code), the ENT directive is only of use when saving Object Code to Disc. If you
are using cassettes to save Object Code, and you require a Run address to be
specified, you will need to Save the, Object Code from the Assembler and load it back
into its correct location from Basic as explained in Section 2.5.2, and then Save it again
from Basic, adding a Run address.

2.8 MULTI-SECTION SOURCE FILES

To overcome the problems of writing very large programs, where there is insufficient
memory for the total Source Code and Object Code in memory together, it is possible to
store the Source Code in sections on cassette or disc, and to assemble the sections
into one long Object Code file.

A maximum of 26 sections of Source Code is permitted, each with the same file name
that also includes an identifying section letter. The first section must contain an ORG
directive, and the last section must contain an END directive. Intermediate sections
must contain neither. Labels in any section can be accessed from any other section,
exactly as if the whole Source Code was in memory at the same time.

The principle of the operation is that each section of the Source Code is loaded into the
Text Buifer in turn, with the Assembler executing the first of the two assembly passes
on each section. Then each section of Source Code is again loaded into the Text Buffer
for the second assembly pass. Therefore, with a limited size of Text Buffer, a very large
Object Code buffer can be created.

For maximum effectiveness, each section of the Source Code should be around 750 to
1000 lines in length. It is impossible to give definite guidelines, but 10K of Object Code
could be produced from 6 sections each containing around 1000 lines of Source Code.

When using Discs to store the sections of Source Code, the multiple assembly process
is automatic, and the normal options of assembly output to the screen or printer or
neither are available. Source Code sections can be stored on more than one Disc if
required.

If a cassette recorder is used, prompting messages are displayed on the screen,
indicating when to start, stop or rewind the tape to access the correct section. Each
section of the Source Code on the cassette does not need to follow on immediately
from the last, as the assembly process allows you time to wind the cassette to the
correct location before continuing.

2.8.1 SAVING A SECTION OF SOURCE CODE

The Multi-Section Source Code commands for cassette and disc, are almost the same
as for normal Source Code. (Section 2.5.2). The main differénce is that in place of the
suffix T after the file name, a section letter is specified thus

54.

SAVE “name” # A

where “‘name’’ is the file name as normal
indicates a multi-section Source Code file
A is the section identifier.

If you defined ‘‘name'’ as a FILE name, you can enter this command by typing

CTRL S for SAVE
CTRL 4 for “name”
CTRL 3 for ' # "
followed by the Section letter.

N.B.
The " # " symbol is available from both SHIFT 3 and CTRL 3.

The Assembler will take the file name ''name'’ (which must be identical for all sections
of the same program) and add ** # A" to the end of the name. This effectively reduces
the maximum number of characters permissible in the file name by two.

When Saving the various sections, you must make sure that the section identifying
letters are in order, and are consecutive letters. You cannot miss out letters in the
sequence. You must also always identify the first section as " # A". When Saving to
Disc, a Type part of “.SCE" is given unless you specify otherwise in the file name.

When you are making changes to various sections of Source Code as you refine your
program, it is a great help to keep a record of the section name and section letter in a
comment line at the start of the listing for each section. This will help to avoid the
possibility of overwriting the wrong section, particularly on Disc, when you save the
modified section of Source Code.

e.g. 0005 ; “name” # C
0006 ;
0010 (Source Code for Section C follows)

2.8.2 LOADING A SECTION OF SOURCE CODE

Alterations to any section of a Multi-Section Source Code file can be made by loading
that section, and subsequently Saving it again with the same file name and section
identifying letter. If you are using Discs, you can Overwrite the old file to save Disc
space. The Load commands follow the normal rules described in Section 2.5 and 2.5.3
but you must specify the Section letters as follows:

LOAD“name” # A

Where "name"’ is the file name as normal
specifies a multi-section Source code file
A is the section letter

If you have defined ‘“‘name" as a FILE name, you can enter this command by typing
CTRL L for LOAD
CTRL 4 for “‘name”’

CTRL 3 for " "
followed by the Section letter.

55.

The Assembler will put the ** # A’ into the correct place in the file name for you.

2.8.3 VERIFYING A SECTION OF SOURCE CODE
Providing that a section of Source code has been Saved and is also the current section
in memory, you can Verify the Save with

VERIFY “name” # A

2.8.4 ASSEMBLING A MULTI-SECTION SOURCE FILE
To Assemble multi-section Source Code files, with no screen or printer output, use the
command

ASSEMBLE # “name”
Where ASSEMBLE is accessed by CTRL and the A key
indicates multi-section Source files
“name’’ is the file name used when Saving the Source Code.

The Assembler automatically adds the identifying letters to the file name for each
section.

If you have defined a FILE name with the “name’’ of the multi-part Source Code files,
this command can be accessed by three key strokes:—

CTRL A for ASSEMBLE
CTRL 3 forss #e
CTRL 4 for “‘name”

If the Source Code files are stored on cassette, follow the screen prompts to set the
tape to the required section and to press PLAY. The assembly process waits for you to
wind the cassette to the correct place, so the sections of Source Code do not need to
be consecutively recorded on the cassettes.

If the Source Code is stored on Disc, the whole process is automatic with screen
prompts to indicate which section is being assembled. If you have stored your Source
Code on more than one Disc (or on two sides of the same Disc), the Assembler will
indicate that it has not found a particular section, and will wait for Discs to be changed.
You will be offered the options to “‘Retry or Cancel’. Press R to try to load that section
again, or C to cancel the whole assembly.

If you require screen or printer output of the fully assembled listing, then you should
type S (for Screen) or / (for Printer) before the # “‘name’’ in the Assemble command
i.e.

ASSEMBLE S # “name” for screen output
ASSEMBLE /| # “name” for printer output

At Assembly time, you may well get an Assembly error such as “jump out of Range’'. If
this happens, amend the appropriate Source Code section and Save it again (see
Section 2.8.1 and 2.8.2 for Loading and Saving) ensuring that you use the correct
Section identifying letter. Having Saved the amended section, restart the Assembly
process with the appropriate ASSEMBLE # command as described above.

56.

o help explain the multi-section assembly process, try the following short example:—

1). Type in the following Source Code
0010 ORG #
0020 TXTOUT EQU OBRSAH
0030 START LD HL, M56
Q040 LI B.LEN

and Save with the command SAVE “test”# A

2). NEW the Source Code, and enter part two thus
0010 LOOF LD A, (HLD

Q020 PLISH HL
QO30 PLSH Bt
Q040 CALL TXTOUT
OOS0 FOF BC

and SAVE with the command SAVE “test”# B

3). NEW the Source Code, and enter part three thus

0010 Pes Hl

0020 INE SSHL

0OOEO0 DINZ LOOF

0040 RET

OO50 MSG DEFM "A multi-part Assembly"
00460 LEN EQLE S —MS

QO70 END

and Save with the command SAVE “test”#C

4), Type in the command ASSEMBLE S # “test”

which will invoke the multi-part assembly and display the results on the
screen.

The whole of the Object Code will be stored in memory in the Object Buffer and you will
need to Save it to Disc/Tape as described in Section 2.5.2.

2.8.5 ASSEMBLY FROM DISC/TAPE TO DISCITAPE

It is possible to extend the muiti-part Assembly process to store the Object Code onto
Disc/Cassette in 2k blocks as it is produced. This limits the size of the Object Buffer to
just over 2k in length, which allows you to use up to 26 sections of Source Code that
can each be made much longer than if the whole Object Buffer had to reside in
memory.

i

The command form is:—

ASSEMBLE # “name’”,“namecode”B for Binary code files
ASSEMBLE # “name”,“namecode”C for CP/M "".COM" files

where ASSEMBLE # ‘‘name” is identical to that described in section 2.8.4,
“namecode’’ is the name given to the Object Code file to be Saved,
B indicates a Binary code file (saved as ‘‘'namecode.BIN"),
or C indicates a CP/M ".COM" file (saved as ‘‘namecode.COM").

If you are using cassettes, the screen prompts will be given as normal for a multi-part
assembly, but during the second Assembly pass, you will occasionally be asked to
“Press PLAY and REC then any key”. This indicates that 2K of Object Code is ready
to be Saved. When this message appears, make sure you have your OBJECT CODE
CASSETTE loaded before recording. It is a good idea to knock out the record protect
tab on your Source Code cassette before starting. You can always cover it with
adhesive tape if you do need to re-record a Source Code file. This will eliminate the
danger of over-writing your Source Code when asked to save a block of Object Code.
When a block of Object Code has been saved to cassette, remove the cassette, but do
not wind it in either direction. Replace the Source Code cassette and carry on.

If you have Dises, you can use any combination of DISC IN or OUT with TAPE IN or

QUT. If you use DISC IN and OUT the only limitation is that the Disc drive storing the
Object Code must NEVER have its disc changed during assembly. The DOS will produce
an error if you do change a disc with an open file on it, and the assembly will be
aborted. Therefore, if you only have one disc drive, the whole of the Source Code and
the Object Code must be able to reside on the one side of one disc. This limits the
maximum amount of Object Code to around 21K, which requires about 145K of Source
Code. This will fill one side of a blank disc.

If you have two drives, you should specify the Drive parts in the filenames, with Source
Code on one drive, and Object Code on the other;

e.g. ASSEMBLE # “A:NAME",“B:NAMECODE"B

This will take Source from drive A and store Object on drive B, and will allow you to
change discs in drive A if the Source Code will not fit onto one disc. Theoretically, this
would allow you to produce up to 64K of Object code if you wished!!!

You can preceed the ** # '' with S for screen output, or / for printer output.

The size of the Object Buffer in memory is only ever just over 2K long, and it is dumped
to disc or tape when the 2K is full. The 2K Cassette/Disc buffer at the end of the
Assembler is used for the loading of the Source Code, and a separate 2K Cassette/Disc
buffer is required for the Object code. The buffer is coincident with the Object Buffer,
both buffers sharing the same 2K block of memory.

The first pass of the Assembler will happen as normal for a multi-part assembly, but
before the second pass, the output file is opened with the usual *“Overwrite / Abandon /
Backup'' options if the file already exists on disc.

At the end of Assembly, the Object buffer only contains the last 2K block to have been
Saved, so it is not possible to Verify the Object Code or to run it in the Object Buffer.

58.

2.9 ASSEMBLER ERROR MESSAGES
The Editor part of the Assembler will produce error messages under certain conditions
as follows:—

BREAK
(i) If the ESC key is pressed while entering or editing Source Code.
(i) If the ESC key is pressed during Loading/Saving operations.
(iii) If the ESC key is pressed TWICE during Listing or Assembly.
(one press of ESC pauses Listing or Assembly — SPACE
continues)

PRINTER OFF LINE
If printer output is requested and the printer is off line or otherwise appears
BUSY for more than 3 seconds. If printer is put on line, printing commences. ESC
ESC will exit if printer is not required.

MEMORY FULL
(i) If there is no room to enter a line of listing into Source Code.
(i) During Assembly if there is no room to expand the Object Buffer.
(i) During multi-part Assembly if there is not enough room to load
the next section of Source Code.

SYNTAX ERROR
If a command is entered incorrectly, or with out-of-range parameters.

UNKNOWN COMMAND
If an External Command cannot be found in any ROM or RSX.

Disc/Tape errors are normally produced by the operating system and are documented
in the AMSOFT manuals.

FILE ALREADY EXISTS
If a named file for Saving already exists on Disc.
Options given are Overwrite/Backup/Abandon.

FILE DOES NOT EXIST

Retry, Cancel
If a named file for Loading is not found on the current Disc.
Change Disc and Retry or Cancel to abort.

VERIFICATION FAILED
Data error on verifying a Saved file.

WRONG FILE TYPE
If non-valid Source Code is attempted to be loaded into the Assembler.

During the Assembly process, the following errors may be displayed on the screen. They
will be followed automatically by a display in the EDIT mode of the line that contains the
error. The cursor will be at the right hand end of the line, as if you had just EDITed the
line.

INVALID ORG
() If there is not an ORG at the start of the program listing.
(ii) If there is more than one ORG in the listing. (The second
occurence produces the error)

59.

INVALID NUMBER
If a decimal number contains a non-numeric character, or if a Hex number
contains an invalid character.

INVALID OP
(i) If an operation name is not recognised.
(i) If a numeric operand has a value out of range for the particular
operation (e.g. loading a single register with a Label whose value
is greater than 255).
(iliy If an invalid mnenomic is entered. (e.g. if there is an incorrect
number of operands).

LABEL NOT DEFINED
(i) If an operand is not a recognised register or condition and no
label of that name has been defined.
(i) If a Hex number does not commence with a number.
(i) If EQU, DEFL or DEFS have an operand that is a label which has
not been defined in a previous line of the listing, or in a previous
section. (These directives cannot refer forward to labels).

LABEL ALREADY DEFINED
If a Label name is defined more than once and the first definition is not DEFL.
The line containing the second definition is displayed.

NO END INSTR.
If there is not a line containing the END instruction.

JUMP OUT OF RANGE
If a relative jump (JR or DJNZ) is asked to jump to an address with an offset of
more than + 127 or — 128.

2.10 SUMMARY OF COMMANDS

ASSEMBLE CTRLA Assemble Source code currently in memory into
Object Buffer. No screen or printer output. ESC
will pause; SPACE to continue; ESC again to

abort.
ASSEMBLE S As above with assembled listing on screen.
ASSEMBLE / As above with assembled listing on printer.
ASSEMBLE # “name” Assembles Source code stored on DISC/TAPE

with file name “‘name’’. Max 26 sections. No
screen or printer output. ESC will pause; Space
to continue; ESC again to abort. N.B. ESC during
a LOAD will abort.

ASSEMBLE S # “name” As above with assembled listing on screen.
ASSEMBLE / # “name” As above with assembled listing on printer.

ASSEMBLE # “name”,“namecode”B or C
Assembles Source code stored on DISC/TAPE
with file name ""name’’. Automatically stores
Object Code back to DISC/TAPE in 2K blocks
with file name "‘namecode.BIN", or
‘namecode.COM’'' No screen or printer output.
ESC as above.

60.

ASSEMBLE S # “name”,“namecode”B or C
As above with assembled listing on screen.

ASSEMBLE | # “name”,“namecode”B or C
As above with assembled listing on printer.

AUTO CTRL + Auto line numbering. Step value as last
specified; from last auto line number.

AUTO x Auto line numbering from line x with last
specified Step value.

AUTO x,y Auto line numbering from line x with Step value
of y.

BASIC CTRLB Return to Basic

CLEART CTRLX Clears Source Code Buffer: Retains and protects
all current labels.

CLEAR L Clears all labels, including protected labels.

CLEARO Clears Object Buffer to zero length.

CLEAR P Removes protection applied to labels by CLEAR
T. Labels remain in table without protection.

COPY xx,yy,zz CTRLC Copies lines xx to yy inclusive in Source code
and inserts them at or after line zz.

DELETE xx,yy CTRLD Deletes Source code from line xx to line yy
inclusive.

EDIT CTRLE Displays first line of Source Code in Edit line at

bottom of screen.

EDIT xx Displays line xx of Source code in Edit line at
bottom of screen.

ESC ESC While Editing or entering a command, aborts
current Edit line. While Assembling or Listing,
first press on ESC pauses function; SPACE to
continue; ESC again to abort.

FILE “name” CTRLF Define a default File name for Save/Load
functions.

LIST CTRL\ List Source code from start of listing onto
screen. 10 lines displayed. SPACE gives next 10
lines.

LIST xx List Source code to screen from line xx for 10

lines. SPACE give next 10 lines.

61.

LIST xx -
LIST /

LIST / xx

LIST / xx—
LIST LABEL

LIST /LABEL

LOAD “name” CTRLL

LOAD “name”N
LOAD “name”C

LOAD “name”A

LOAD “name” # X

LABEL CTRLK
LABEL /

LABEL O

LABEL 1

LABEL NAME

MONITOR CTRLM

MODE 1 X,Y CTRL1

As above.

List Source Code to printer from start of listing.
Continuous to end of listing.

List Source Code to printer from line xx to end of
listing.

As above.

List Source Code to screen from label LABEL for
10 lines. Space gives next 10 lines.

List Source code to printer from label LABEL
through to end of listing.

Loads Source code file from DISC/TAPE with file
name ‘‘name’’ (only if it is valid Source code
file). Deletes all existing Source code and
Labels.

As above.

Loads valid Source code file from DISC/TAPE
with file name ""‘name’. Deletes previous Source
Code but retains and protects current Labels.

Appends valid Source Code file from DISC/TAPE
with file name “name'’. New Source Code added
to end of existing Source Code. Deletes all
labels.

Loads section X of a multi-section Source file.
Deletes all previous Source Code and labels.

Displays label table to screen if enabled.
ESC to pause: ESC again to abort, or SPACE
to continue.

As above with printer output.

Disables label table display.

Enables label table display, and displays table to
screen.

Displays to screen the Hex value of label NAME,
if it has been defined.

Access to Monitor AMMON if it is in memory.
Sets screen Mode 1.
Optional screen colours:

X = INK colour (0 to 26)

Y = PAPER colour (0 to 26)

62.

MODE2 XY

NEW

RENUM X

RENUM X,Y

RENUM X,Y,Z

SAVE “name”T

SAVE “name”B

SAVE “name”C

SAVE “name” # X

VERIFY “name”

VERIFY “name” # X

CTRL @

CTRL left cursor

CTRL2

CTRLN

CTRLR

CTRLS

CTRLV

CTRL @

Sets screen Mode 2.
Optional screen colours as above.

Deletes all Source Code and labels. Resets
assembler buffers to null state.

Renumbers entire Source Code with step value
of X.

Renumbers Source Cede from line Y to end in
steps of X.

Renumbers Source Code from line Y to end in
steps of X, giving line Y a new value of Z+ X.

Saves Source Code with filename of “‘name'’. (or
“name.SCE" to Disc).

Saves Object Code as Binary file with filename
“name"’, (“name.BIN" to Disc). .

Saves Object Code as ASCII file with filename
“‘name’’, ('name.COM" to Disc).

Saves a section of multi-part Source Code as
“‘name # X", (“‘name # X.SCE" to Disc).

X = Section suffix: First section must be # A;
subsequent letters must be consecutive.

Verifies incoming Source or Object Code with
appropriate buffer (cassette). With Discs, Object
code's Type part must be specified in name.

i.e. VERIFY “name.BIN"".

Verifies incoming Source Code with current
Source Code in memory for a section of multi-
part Source Code.

Resets keyboard expansion strings. Also resets
FILE name to null string.

Moves cursor to left hand end of Edit line at
bottom of screen.

63.

SECTION 3

USING “AMMAS” and “AMMON” TOGETHER

Memory Map

{« HIlllEI! »
i i : omar e 1 :
i iBasic! Object : 3 ' J i 5 ! Screen RAN |
H | Buffer : g Teste o 1DOS! VARS, | i
bl b 1)) SPARE (s Buffer | Mo Lt 101 P G |
! b ! ! ASS IRSX! etc. | i
fl 0/5 ROM oty :] tetci | Basic RON = |
i 1 H i e i H
! i__: ! i] (2 i

4000H Nonitor etc. COOOH

can be loaded here
before Assesbler

LOADING ASSEMBLER & MONITOR TOGETHER

Both programs use a Basic loader program, so make sure that you do not have any
important Basic in memory before loading. As both programs are set up as RSXs, the
CPC464 should be as near to its EMS (switch on) state as possible. If you wish to
reserve a block of memory at the top of the memory pool for your own machine code or
RSX, then alter HIMEM before loading our programs. (Don't forget to do a SYMBOL
AFTER 256 if you want to create further defined characters.)

Type RUN" (cassette) or RUN “MON'" (Disc) to load the Monitor, and when asked for
the ""Start address?" reply by pressing ENTER. This will locate the Monitor at the
highest available memory location, set HIMEM to immediately below the Monitor, set up
the RSX and return you to Basic.

Type RUN" (cassette) or RUN “ASS" (Disc) to load and run the Assembler at the new
highest possible memory location. HIMEM will be set very low and the Assembler will be
entered.

In this way, there will be no conflict of memory between the Assembler and the Monitor,
but the memory available to the Assembler will be reduced.

Use of the # label to test a program

When you are using AMMAS, it stores the value of HIMEM + 1 as the value of the
“ # " |label, and uses this value as the start of the Object Buffer. This label can be
useful when you are developing a Machine Code program with both AMMAS and
AMMON in memory together.

Defining the ORG in your Source Code as ORG # will instruct AMMAS to take the first
byte of the Object Buffer as its Origin when you assemble the Source code. The

64.

resulting assembled code stored in the Object Buffer will, therefore, be assembled
correctly to run in the Object Buffer location.

Having assembled the Source code, you can then access AMMON and use the Monitor
commands to test your program. (You should already have Saved your Source Code in
case your program crashes irretrievably). If you find an error in your programming, you
can re-enter AMMAS, make a change and re-assemble the code, and test it again with
AMMON. When you are sure that your program is error free, go back to AMMAS once
more, and change the ORG address to the location where your Machine code will
ultimately live, and re-assemble it. You can now Save the Object Code to Disc or
Cassette, ready to use on its own, without requiring AMMAS or AMMON to be in

memory.

65.

SECTION 4

Z80 MNEMONICS
A full list of Z80 Mnemonics acceptable to AMMAS

ADC A, (HL) BIT 2, (HL) DEC (IY+5) LD

ADC A, (I1X+5) BIT I, (IX+5) DEC A LD

ADC A, (IY+5) BIT 3, (IY+5) DEC B LD

ADC A, A BIT 3,A DEC BC LD

ADC A,B BIT 3,B DEE" "C LD

ADC A,C BIT 3,C DEC LD

ADC A,D BIT 3,D DEC DE LD

ADC A,E BIT 3,E DEC LD

ADC A.H BIT 3,H DEC H LD

ADC A,L BIT .3.L DEC HL LD

ADC A, 20H BIT 4, (HL) DEC IX LD

ADC . BC BIT 4,(IX+5) DEC IY LD

ADC HL,DE BIT 4, (I1Y+5) EC L LD

ADC HL,HL BIT 4,4 DEC SFP LD

ADC HL,SF BIT 4,B LD

ADD A, (HL) BIT 4,C DJINZ ZEH LD

ADD A, (IX+5) BEIT 4,D LD

ADD A, (IY+5) BEIT 4,E EX (SF) . HL LD (IY+5) L
ADD A.A BIT 4,H EX (5P, IX LD (IY+5), 32
ADD AR BIT 4.L EX (SF) . IY LD (0S84H) . A
ADD A,C BIT 5, (HL) EX aF,alF’ LD (0584H) , BC
ADD A,D BIT S, (I1X+5) EX DE,HL LD (0S584H) . DE
ADD A,E BIT 5, (IY+5) EXX LD (0S84H) , HL
ADD A, H BIT 5,A HALT LD (0S84H) , IX
ADD A.L BIT S,B MO LD (0S84H) , IY
ADD A, 32 BIT S,C IM1 LD (0584H) , SF
ADD HL,BC BIT 5,D M2 LD A, (BC)
ADD HL, DE BIT 5,E IN A, (C) LD A, (DE)
ADD HL HL BIT 5,H IN E.(C) LD A, (HL)
ADD HL,SFP BIT . 5L IN C, ¢C) LD A, (IX+5)
ADD IX,BC BIT &, (HL) IN D, (C) LD A, (IY+5)
ADD IX,DE BIT &, (IX+5) IN E, (C) LD AL (OS8AH)
ADD IX,1X BIT &, (I1Y+5) IN H.(C) LD A.A

ADD IX,SF BIT &,A IN L, (C) LD A.B

ADD IY,BC BIT &,H INC (HL) Lo A.C

ADD IY,DE BIT &;C INC (IX+5) LD AD

ADD 1Y,.IY BIT &,D INC (IY+5) LD A,E

ADD 1Y,SP BIT &,E INC A LD A,H

AND (HL) BIT &,H INC E LD AT

AND (I X+5) BIT &,L INC BC LD AL

AND (TY+5) BIT 7, (HL) INC: € LD A, 22

AND A BIT 7, (IX+5) INC D LD A,

AND B BIT 7,(1Y+5) INC DE LD B, (HL)
AND C BIT 7,A INC E LD B, (IX+5)
AND D B1T 7,B INC H LD B, (IY+5)
AND E BIT 7,C INC HL LD B,A

AND H BIT ' 7,0 INC IX LD BB

AND L BIT 7,E INC IY Lh B,

AND 32 BIT 7,H INC L LD EB,D

BIT (O tHL) BIT 7.L INC SP LD E.E

BIT O, (IX+5) CALL C,0584H 1 A, (Z2) LD E.H

BIT O, (IY+5) CALL M,0S584H IND LD B,L

BIT 0.A CALL NC,0584H INDR ED « B;32

BIT 0O,B CALL NZ,0S84H IN LD EC.

BIT ©O,C caLL S84H INIR LD BC , 0S84H
BIT D CALL FE,0S84H JE | 0S84H LD . C, tHL)
BIT E caLlL PO,0584H JF HL LD ° C, (IX+5)
BIT O,H CALL Z,0584H JFP IX LD Cq (1Y+5)
BIT ©O,L CALL 0584H JP IY LD C.A

EIT 1, (HL) CCF JP C,0584H Lh C.E

EIT 1, (IX+3) ce (HL) JF M,0584H LD €.C

BIT 1, (IY+5) cp (I1X+3) JP NC,0584H Lb C,D

BIT 1,A cpP (TY+5) JP NZI,0584H LD C,E

BIT 1,B CF A JE FP,0584H LD C,H

BIT 1.C CF B JP FE,0S84H D Bl

BIT 1,D CF . € JFP PO, 0584H LD C,32

BIT 1,E ceP D JF Z,0S584H LD D. (HL)
BIT 1,H P E JR 2EH LD D, { [X+5)
T o cP - f JrR NE.ZEH LD D (Iv+5)
BIT 2, (HL) CF L JR MNZ, 2EH LD D.A

BIT 2] (IX+5) cp - 32 JR Z,DEH LD D.E

BIT 2, (I1Y+5) CFD JR 2EH LD D,.C

BIT 2,A CFDR LD (BC) A LD D.D

BIT 2,B CFIR LD (DE).A LD D.E

BIT 2,C CPI LD (HL) . A LD D.H

BIT 2,D CPL LD (HL) . B LD D.L

BIT 2,E DAA LD (HL) .E LD D, 32

BIT 2,H DEC (HL) LD (HL) .D LD DE, (OS84H)
BIT" 2L DEC (IX+5) LD (HL) L E LD DE, 0S584H

66.

CoDoDUD :
etelelotolololelotslol ot ol ol ot o el mlmt o oo folotal ol slotot o oI Tl Rl T

i 1 S 5 5 L AL 0 B

E. (HL) | 8 v
ELiTv+5) RES OLE ﬁt b sEr 3%
e RES olE RLH SET 3. (HL)
E,F RES O;L RLA = FEL S Cnllneny
EoC ggg 1, (HL) RLE (HL) gg; 3, (I¥+5)
ELD RES 11 (1X+3) RLE (TX+3) SET 3B
ELE RES },Arv+5) RLC (IY+5) SEY “BiC
E.L RES 1.B RLC B o5
EiL RES 1.E B SET 3E
Eidz | ARSI b RIE © SET 3.H
0l O1Xes) RES 11E B8 SET 3t
Hi (1Xe3) RES 1.E RLC E SET 4, (HL)
Hik RES 1.H RLC H SET 4, (1X+5)
H R RES 2, (HL) iR T4 V)
HE RES 2. (1X+5) i ST 48
HeD RES 2, e’ Ser 48
i RES 2,;1v+5) RR (HL) SET 4,C
H.E RES 24 RR (IX+5) SET 4.D
o RES 218 RR (IY+5) SET 4,E
Hik RES g'D RR A SET 4,H
HI. . (0S84H) RES 2'E Ay ST 2%
HL . 0SH4H RES 2'}1 & g SET =1 (T%s
o RES 2,H RR D SET S. (IX+3)
1%, (0584H) RES 3. (HL FR A S S
1X,0584H RES 3! (TEem) RR L SET SiB
1Y, (0S84H) RES 3. (IV+5) RRa - ST 3
1Y, 0584H RES 3.,A RAC 8T 5D
L, (HL) RES 3.B RRE (134 Ser S8
Ly (IX+5) RES 3,C RRE (1ved SET SR
L, (T¥+5) RES 3.D RRE A SET Sib
L,A RES 3.E RRC B SET &r¢
£.a RES 3.E RRC B SET &6, (HL)
Les RES 3.H RRC C SET &, (IX+3)
L.C RES oL RRC D SET &, (IY+5)
L.E RES 4] (Ths RRC H ST QR
Co RES 4 N3 RRE L SET 60
i RES 4.4 RRea = SET &'
Ci32 RES 4B RRD SET 418
R. A RES 4.C Rar SET e
gﬁ.eosequ: RES 4,D EL kT el
£
SF.IX Rea 3’5 Rer 1w = oo
SPl1Y RES 4.L ReT 2o ST 7LvE
8F} 0584H RES S (HL) et ed 1 A
g ;
RES 5. (IXe3) RST ZOM S iR
o S’A’Y*5’ RST 38H SET 7,C
RES 3.8 SHC A, (HL) 8ET 7,0
RES 3.8 SBC A, (1X+3) SET 7,E
RES 5.C SBC A, (IY+5) SET 7,H
(HL) RES 5.E Sk Ak Sth (AL
(1X+5) RES 5S.H SEE AlE S (1xe
(IY+5) RES S.L ShE AlD StA (19e5)
i RES S SEC A,D SLA (IY+5)
A RES & (HL) SBC ALE SLA A
C RES 2! (1% 2C AL Sh €
D RES 6.A 2Bt AlS S&A D
E RES &.B SBE hioB SrA &
£ RES &.B SBC HL,BC SLA E
L RES 6.D SEe : StA L
Lo RES 6.D SBC HL,HL SLA L
RES 6,E SBC HL,SF SRA (HL)
RES &,H SCF SRA (IX+S)
(), A RES 7. (HL) 2T 61 (The -
(€) B RES 7, (1X+5) 86T a3 A B
(C)5C RES 7. (IY+5) et oa Sra C
(€D RES 7.4 ST OB 8ka b
(E) 1E RES 7.B ST o Ska €
(C) o H RES 7.C ST 0.5 Ska A
(E)SL RES 7.D SET o8 SRa L
32}, A RES 7.E 21 oh SR
RES 7 E SET O,H SRL (HL)
RES ?‘L SET O,L SRL (1 X+5)
x RES 7. SET 1, (HL) SRL (I¥Y+3)
oF RET SET 1, (IX+5) SRL A
Bc pETE SET 1, (1Y+5) SRL B
HL RET NC %71 1B SRt B
1x RET NZ SETr 116 SR B
X RET SET 1,C SRL E
AF RET FPE ST 18 SRt L
EC RET FO 2T 16 SUE ¢
EC pET z SET 1,H SUB (HL)
DE RET, SET i’L SUER (IX+5)
e RETI SET 2. (HL) SUB (IY+5)
1x RETN . SET 2, (IX+5) Sue A
0, (HL) RL (IX+5) T 24 Sue E
O, (IX+5) RL (Iv+5) ST 28 sundS
0) (IV+5) Ly SET 38
ala RL 2 SET 235
gia RL B SET 2,D
SET 2,E

67.

SuUB D Suep 32 XOR A XOR E
SUB E XOR (HL) XOR B XOR H
SUB H XOR (IX+5) XOR C XOR L
SuB L XOR (1Y+5) XOR D XOrR 32

Extra Z80 Instructions.

There are a number of Z80 instructions that are not published or documented by Zilog,
but which appear to work on all Z80s. They have been found by experiment on some of
the apparently missing Hex code sequences. They are mainly operations on the
individual halves of the IX and IY register pairs.

AMMAS will accept these instructions in the forms shown below, but AMMON will
decode them to their HL equivalents. Generally, the MSB of IX is called XH and the LSB
is called XL; the MSB of 1Y is called YH and the LSB YL. There is one extra arithmetic
instruction, SLL, which Shifts the byte to the left by one BIT, puts BIT 7 into the CARRY
and SETs BIT 0. The flag results for SLL are as for SRL.

The extra instructions are:—

SLL (HL) LD XL,A

SLL (IX+5) LD YL A

SLL (IY+5) LD A, kH

SLL A LD A,YH

SLL B LD A, XL

SLL € LD A,YL

SLL D ADD XH

SLL E ADD YH

StL H ADD XL

SLL L ADD YL

INC XH ADC XxH

INC YH ADC YH

B S i

e 2 %

LD YH,32 SUE YH

INC XL SUE XL

INC YL SUE YL

B 3t g

LD XC,32 SBc

LD YL 332 SEC YL

LD B, kH AND XH

LD B, YH AND YH

LD B, XL AND XL

LD B, YL AND YL

LD CyXH XOR XH

LD C.YH e

LD C,XL XOR XL

Lb C,YL XOR YL

LD D, XH OR XH

LD D,YH OR YH

LD D, XL ol L

LD DevE OR YL

LD E, XH CP XH

LD E,YH CP YH

Bl &
: - A Ty

LD XH,B 4

LD YH,E

LD XH

LD YH,C

LD XH,D

LD YH.D

LD XH,E

LD YH,E

LD XH,XL

LD YH,YL

LD XH,A

LD YH.A

LD XL.E

L3 YL B

R S

Ch: 7 Y6

Ch * X..D

LR YD

DL X E

LD YL,E

LD XE XM ®

LD YL,YH

68.

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

