
THE,CW
N/IACFIINE

The CODE MACHINE consists ol one casselte and this manuat. The
packaging may contain space for a second casse e lo allow you io store
a back-up copy.

The COOE ùIACHINE war wrltton lorlhs CPC 46,1but lE comps bts
wlth tho CPC 86,1 wllh an exlemll clssollo rocordor.

Copyrighl 1985 by Picturesqle
All righls reseNed This book and the
accompanying compulêr program ar€
copyrighl No pert ot eirher this book or the
accompenying compuler program may be
reproduced. cooiecl, lenl, hired. or lransmitted
by any means wilhoul lhe orior wrilten
consenl ol lhe publishers.

Publishecl by:

Picluresque.
6 Co*screw Hill.

Kent BR4 988.

CONTENTS

IITTRODUCTION

SECTIOI{ 1 - THE UONITOR'DISASSEI'BLER "A ON"

1.1 General Descriplim
'1.2 Loading AMMON
1.3 Access to AMMON
'1.4 ïhe prompt and Cu.sor
1,5 AMMON COMMANDS

1.5.1 M - lnspect and change memory contents (Hex)
1.5.2 ESC - Escape
1.5.3 $ - lnspscl and change memory conteflts (ASCll)
1.5.4 I - lnseri
1.5.5 D - Delele
1.5.6 A - Area Move
1.5.7 F - Fi
1.5.8 P - Prinl Hercraphics Dump
1.5.9 Z - Disassomblê.
1.5.10 N - Number Converler
1.5.11 E - Access to Editor Assêmbler
1.5.12 Êxample program for Running and Debogging conmands
1.5.,13 B - Breakpoint
1.5.'14 J - Jump and Execute
1.5.15 K - Ereakpoint restore
1.5.16 R - Registers display
1.5.17 C - Breakpoint continue
1.5.18 T - Trace (Single Step)
1.5.19 S - Search
1.5.20 L - Lo!,t er FIOM access
1.5.21 U - Upper ROM access
1.5.22 Y - Return to Basic

1.6 lnterrupts
1.7 ROM slates and th€ STACK
1.8 Screen modes
1.9 Keyboard
1.10 The Monitor in practice
1.1 1 Summary ol Commands

SECTION 2 - THE EDITOR/ASSE BLER'AMiIAS"

2.1 Generaldescription
2.2 Loading AMMAS
2.3 Acc€ss to AMMAS
2.4 THE EDITOR

2.4.1 AMMAS COMMANDS
2.4.2 Screen display
2.4.3 Ênlering I line ol Source Code
2.4.4 L|ST
2.4.5 ED|T

2.5

2.6

2.4.6 AUTO
2.4,7 RENUM
2 4 8 DÊLETE
2.4.9 COPY
2.4.10 NEW
2,4,I1 CLEAR
2.4.12 MOOE 1

2.4.13 MODE 2
2.4.14 BAS|C
2.4.15 External commands
2.4.16 COPY CURSOR
2.4.17 COMMENTS
2.4.18 ESC
2.4.19 Resstting the Keyboard
2.4.20 MONITOR access
CASSETTE AND DISC Commands
2.5.1 FtLE
2.5.2 SAVE
2.5.3 LOAD
2.5.4 VERIFY
2.5.5 External DISC Commands
THE ASSEMBLEF
2.6.1 The Object Butl€r
2.6.2 Numb€rs
2.6.3 ASCII Characters
2.6.4 Arilhmetic
2,6,5 LABELS
2.6.6 Label slicing
2.6.7 JB/OJNZ
2.6.8 Asse.nbling Source Code
ASSEMBLER DIRECTIVES
2.7.1 oRG
2.7.2 END
2.7.3 EOU
2.7.4 DEFL
2.7.5 DEFB
2.7.6 DÊFW
2.7.7 DEFS
2.7.4 DEFM
2.7.9 PRNT
2.7.10 ENT
MULTI.SECTION SOURCE FILES
2.8.1 Saving a section ot Source Codê
2.8.2 Loading a sectbo ol Source Cod€
2.8.3 Verilying a section ol Source Cod€
2.8.4 Asssmbling a multi-ssclion Source tile
2.8.5 Assombly trom Disc/Tape to Disc/Tape
2.9 ASSEMBLER ERROR MESSCGES
2.10 Summary of Commands

SECTION 3 - USINC rnd 'AltllloN"

sEc ol{ { - zu, uNEuo lcs

2.7

2.8

INTRODUCTION

The CODE MACHINE is a lull feature Machine Code programming developm€nt package
consisting ol an Edilo./Assembler and a separate Monitor/Disassembler. Both programs
are entirely sell-conlained, and are written entirely in Machine Code.

Ihe Editor/Assembler (called "AttMAS") will allow you to enter and edil Source Code
listings (mn€rnonics and label names): to produce Obiect Code (the actual Machine Code);
lo print your Machine Code listings onto a printer; and to Save and Load Source Code o.
Object Code.

The Monitor/Disâssembler (called "A ON") gives you all the commands you need to
lest and debug you. Machin€ Code programs, as well as lacilities to invesligate the inne.
workings of l,our Amstrad computer.

You will tind lhat both programs are very quick and easy to operate, which makes the
COOE MACHINE an ideal programming aid for beginners and lor expe.ienced Machine
Code programmers alike.

ll you a.€ new to Machine Code programming, you will need to purchass a book to teach
you how to write in Machine Code - and there a.e sêveral available to choose from.
Machine Code is not an easy language to write, and it is be!.ond the scope ol this manual
to teach lhe subjecl, bui, us€d in coniunction with a good book, the CODE MACHINE will
help you lo unde.stand how Machine Code wgrks, and where you ars going wrong.

But, to get the rnost lrom programming your CPC 464 in Machine Code, we stroogly
recommend that you purchase "The Concise Firmware Sfrecilication" kom AMSOFT
(SOFT 158) as this will give you all lhe information you will need aboul the computer lor
simple and effeclive Machine Code programming. lndeed, wilhoul this mine of inlorma-
lion, your Machine Code programs will be very limited and will nev€r ba able to use the
many excellent leatures ol the CPC 4ô4.

sEcTloN 1

The MONITOR DISASSEiTBLER "AMMON" verslon 1.1

'l.l General Descrlpllon
The MONITOR allows you to inspect or change lhe conlents ol memory localions, and
works enli.ely in Hex, which is the most logical number system to use in Machine Code. A
display ol memory is also available in ASCII characters to allow you to search lor
messages or lo enter messages.

One of the biggesl problems with Machine C,ode programming is lracking down ellors,
since there is no built-in ellor detection as ihere is in the Basic interpreter. The MONITOR
helps you over-come lhis by allowing you to insert a Breakæint in your Machine Code,
which temporarily siops your program al thal æint when il is run. Having encountered a
Ereakpoini, you can use lhe MONITOR'S commands to check that the values in lhe CPU
regislers are correct, lhat dala bytes have the coffecl values and lhat your program has
nol overwritten or corrupted ilself.

Ihe MONIÎOR will give you a display ol the conlenls of all the CPU registers at lhe greak.
point, and allow you to disassemble your program (or any parl of memory including either
ROM). A more precise but more timeconsuming melhod of error detection is available
with the Single Slep lealure. Each instruction is executed in isolation, wilh a comprehen-
sive screen display ot lhe machine statusr You can even Single Step lhrough the ROM
routines- Either lhe Upper or Lower ROM can be enabled or disabled, and can be
Disassembled or Single Stepped lhrough. Memory management commands allow you to
move lhe contents ol a block ol memory to a new location; to insert or delete a number ol
byles within a block without retyping the rest ol the block; to fill a specilied area with any
value; and lo search lor up to 10 consecutive ASCII characters, or up lo 5 consecutave
Hex byles.

To simplify any interchange with Basic, a Dec-H€x-Dec numb€r converte. is included,
along wilh prinler routines lor the disassembler. The MONIïOR is lotally compatible with
Basic, allowing you to return to Basic at any time. Machine Code programs can either be
run lrom Basic, with the CALL lunction, or from the RUN command within the MONITOR.

The Monitor is fully relocatable in memory so that il can be loaded into the mosl conve.
nienl localion lor the code you are working on- To allow easy access from Basic, the
Monilor is set up as an RSX so thal it is accessible via an External Command, and it
allows direcl access to lhe Assembler when both are in memory iogelher.

1.2 Lordlng AiTMON
As lhe Monitor oDerates in memory as an RSX, il is advisable to load il into a clean
machine, so clear lhe CPO464 by CTRL + SHIFT + ESC. ll you have Discs attached then
enter the c,irecl commandlTAPE.IN (ENTER) and lype RUN" (ENTER) to Load the
Monilor. AMMON gives you lhe option ol making a Eack-up copy onto Disc or Casselte,
and it you have Discs allached, you should enler the direcl command I TAPE.OUT il you
require a casseile back-up. You should also sel the casselle write speed trom Basrc
befo.e Loading lhe program.

AMMON is lully relocalable, and a Basic loader program loads lirsl and asks you

2

lor the start address lor the Monitor. Type in this address either as a decimal value or as
a Hex value (preceded by &') and press ENTER. HIMEM will be sel to one byte below the
eniered address, and then the Code will be loaded in. At lhis point you will be ask€d
whelher you want to make a Back.up copy. The p.ogram is then run to acluate lhe
relocator. The relocate.outine relurns to Basic with lhe normal Beady' message.

The lolvest address you can no.mally Load to is &1321 (Hex). However, if belore loading
the Monitor, you permanently reserve lhe Disc/Tap€ butler, you can force a much lor^rer
minimum loading add.ess. To do lhis, execute the follo^ring Basic cornmands:

OPEI{OUT 'DU r':IEmORY Hl E .l

As HIMEM and the Disc/tape buller will nol now be conseculive in memory, Basic cannot
recover the buller atter use, and the Monilor will also use this bufler when il loads its own
code. Be aware when using lhe Monilor that lhe buffer slill exists as far as Basic or your
machine code as concerned.

The Basic loader lor the Monitor does not contain a SYMBOL AFTER 256 command, so il
you need to define other graphic characters after the Monitor has loaded, you should clear
lhe definable graphics with SYMBOL AFTER 256 b€lore loading the Monilor, otherwse
HIMEM and the graphic definitions will separale, and Basic will noi be able to recover the
graphic area of memory. lf you see a 'Memory Full error when you load the Monitor, it is
likely that SYMBOL AFTER is the cause. or thâl you have sæcified loo low an address lor
Loading.

To locale AMMON to the highest available address, do nol enter a slart address but simply
press ENTER. ln this case, AMMON will posilion itsell immediately under the curent
HIMEM, resetling HIMEM lo underneath its€lf. (This is useful when using the Assembler
and Monilor together or when other ROM or RSX soltware is requireo.

There is no check made on lhe Sta.t Address lhal you specify, and the machine wili crash
il you overwrite Statjc Variables, Jumpblocks etc.

AMMON is totally self-contained and not dependant on any Basic. Having loaded and
relocaled, you can now Load any Basic or any olher Machine Code that you require, bul
remember ihai il you move HIMEM to a higher address than the Starl Address given on
Loading the Monilor, you run the risk ol corrupling AMMON.

Lordlng . brck up Copy
To Load your back up copy ol AMMON, type RUN "MON" and tollow the screen prompts.
You will not be otlered a further back up option.

WÂRNING

THIS PROGRAM IS COPYRIGHT ANO ONE COPY ONLY
m.y be m.d.lor you? OWN PERSONAL USE.

It is ill€gâl to.ell copie. or to eiv. copi6 to fri.nds.

N.B.
For the purposes ol ihe examples in lhis parl of the manual, il has been assumed lhat
AMMON has been loaded lo the highest available pan ot memory on Loading.

1.3 Ac€r$ to AMllOl{
Having Loaded and relocated, you can access AMMON with the ExlernalCommand
I ON, or by CALL nnnn! where nnnn is lhe Start Address supplied on Loading. You will
be greeted with the screen message "SPACE lor MONITOR". On enlry to AMMON, you
will always see lhis message along with everylhing else that is currently on the screen.

Pressing SPACE will clear th€ screen and allow enlry to the Monilor with the Prompt and
Cursor displayed on the bottom lin€.

1.4 Prompl & Curtor
The prompt (Ël) indicates thal the MONITOR is waiting lo be pul into a command mode.
It does not appear at lhe start of €v€ry line of lhe display, but only appears when a corn-
mand rouline has ended, and the MONITOR is wailing for a new command instruction.
The cursor is visible lor the majodly ot the time, and indicates a request lor a keyboard
entry, and shows where the rôsult of lhal keyboard entry will be displayed on th€ scre€n.

1.5 AM ON CO UANDS
The range of commands ofle.ed by lhe MONITOR is as follows:-

M Display a memory localion & its contenls in HEX, and change its contents.

$ Display a memory location in HEX and its contents in ASCll, and change its
contents.

ESC Escape lrom a command mode to the Prompt & Cursor.

I lnsert up to 255 bytes into a block ot memory.

O Delete up to 255 byles from a block of memory.

A Movs the contenls of an area of memory to a new location.

F Fill a sp€citied area ol memory with a given byte value.

P Hex./Graphics memory dump to Screen/Printer.

Z Disassemble to Screen or Prinler.

N Numbor conversion: Hex lo Dec and Dec to Hex.

E Access lo Editor Assembler (it loaded).

B Set a Breakpoint.
J Jump to a specili€d address and execute lhe code there.
K Restore code atter a Breakpoint.

R Regislgr display.
C Continue €xeculion ot program atler a Breakpoinl.
T Trace (Single Slep) wilh front panel display.

S S€arch lor Hex or ASCII values in memory.

L Lower ROM enable/disable.
U Upp€r FOM enable/disable.
Y Return lo Basic.
Select screen stream.

All command modes are acÇessed by a single keystroke denoted by the lelter in the lelt
hand column above. All keyboard entri€s are chscked lor validity, and at any given time
only lhe permitted entries are accepted. Any olher key press is rejected and the keyboard
is scann€d again.

All numeric inpuis and displays are in HEX to lacilitate the eniry and inspection of Z8O oÈ
codes. The numb€. conversion command simplilies any exchange between Hex and
Decimal.

All reterences io addr6ss6s and their contenis in these instruclions will be in HEX, and will
be shown as a two or four figure number with no prefix or suffix.

1.5.1 il - lnrpacl & chrngô mclnory oontcnts (H.xl
Th€ screen should show lhe Prompt & Cursor on the botiom line. lf this is not so, then
press ESC,

Type M

An inverse M will appear imm€diately to th€ right of the prompt, and the cursor will move
along the bottom llne by one character spac€.

Now tyæ in lhe HEX value ot lhe address that you wish to inspect, say 6000. (You can
use the MONITOR to inspecl or change any memory location in RAM or BOM, although
you cannol alter the RoM values.)

Do not worry if you tind ditterenl values in these memory localions from those shown.

The address appgars on the screen as you lype it in, and as soon as you have typed the
lourlh digit, a two character Hex number appears on the screen to the right ol the ad
dress, showing lhe Hex value of the conlents of that memory localion.

Elil6sss @s I
The cursor has now rnoved on, leaving a spâca atter th€ twg contents digits.
Now type FF.

ulilcsBo GlÊ Fr' I
This has loaded the Hex value FF into memory location 6000. The value is loaded inlo the
location automatically atler you type the second djgit.
Now type ENTER.

EùrÊ9tB""E t"
The original line wilh the prompt has scroll€d up one line, and 6001 00 is now displayed on
the bonom line. At alllimes, the MONIÎOR operates with a scrolling scre€n, and new in-
tormalion is always displayed on lhe bottom linê.

lrrf o+rren ai"otîn
ln î"* i:JHiJî3:"1^tr1'"''il",lli'i; J:"ï'i""#yî"glll:.

Now let's check lhal FF really has been loaded into address 6000.
Type M

Itl,liGClÊlÊ f:ltt É'F
6etÊr -1 {f {t;I
The screen has scrolled up one line, and lhe inverse M has reappeared on the botlom line.

Typrng M after a HEX address, dala enlry, or ENTER, allows you lo re-enter the M com-
mand roLrline al the starl. To re-enier the M command in lhe middle of lyping a Hex ad-
dress, press ESC to escape, and ll to enter lhe M command.
Now type 6000

)t: rËetËÊt €t€t ,F'FtErÊl1 ErEr
;JÊ(t{]rn rr I
The contents ol 6000 are shown as FF.

1o summarize the M command so lar, you can sequentially step lhrough memory loca.
lions using ENTEB and change the value of lhe contents ol each address, or, by typing M
again, you can deline a new slarling address.

To re-enter lhe M command wilh a partly typed address on the screen, press ESC to
escape to lhe Prompt, and then type Il to enter the M command.

Now lype 0O to clear lhe contents ol address 6000. You will notice that the cursor is still
visible on the botlom line of the screen to lhe right of lhe 0O just entered. Although ad-
dress 6000 now conlains the value 00, (the value was changed immediately you typed the
second 0) you can change it again il you wish.

So, il you enter an incorrect value, and realise what you have done before you Dress
ENTER, you can correct your mistake without having to specily the address again. ln tact,
you can make only two altempts at entering a valus belore the routine returns you to the
prompt and cursor, when you will have to type M to re-enter the M command.

Remember, that in the M command, ENTER only has the etfect ol stepping on to the next
memory location, whereas in other commands (where applicable) ENTER causes the
operation to be executed.

lmagine lhal you have jusl enlered a machine code rouline from, say 6000 to 6200, and
you realise that you need to change ihe value ol one byle somewhere near the middle of
the rouline, but you do not know lhe precise address. You could spend a long time guess-
ing addresses and looking at their contenls, or repealedly pressing ENTER until you find
the right byte. But il you type M, to reenter the M command, and look al the contents of
an address somewhere near the beginning of the rouline, then press ENTER. lnd hold lt
pra$ad, alter âboul 1/, seconds lhe screen will starl scrolling quite lasl, and will rapidly
display successive locations until you release ENTER. ln this way you can quickly scan
lhrough a routine until you find the byie you are looking lor. To effect the alleraiion, having
released ENTER, you will again have to type M xxxx to reenter lhe M command al the
correct address, and lhen change the conlents 01 that address-

1.5.2 ESC - Ercrp€ lrom r oommrnd
ESC allows you to escaæ lrom a command mode. and returns you to the Monitor's
Prompt & Cursor.

Press ESC

The screen will scroll and the Prompt & Cursor will reapæar on the bottom line of the
screen. You can now enter any ol the Monitor commands. All command roulines, wilh the
exception of R (Register display) and K (B.eakpoint cleaO, will accepl ESC to escape at
any iime up to the point ol execution.

1.5.3 S - lnspecl & ch.nge memory contenis (ASCll)
This command operates in a similar lashion to the 'M' command, but allows you to enter
texl direclly from the keyboard. lt is by no means a word processor, but it olfers a much
simpler melhod of text entry lhan by converting letters to their characler codes, and
entering the codes individually with the 'M' command.

the command lakes the form: t llra where a is the command mode, and tttt is the
staning address ol lhe text block.

Let us enter a simple message into a lree area ot RAM.

Tyæ $ (Shilt and '4') to enter the $ command.

An inverse $ will appear on the botlom line of lhe display.

Type 6100

The address is displayed as normal.

As you lype in each lener ol the message, it is displayed on the screen, to the right ol the
address and its present contenls, and the character code is stored in ihal address. The
screen scrolls automatically, displaying the next address and its present contents. You do
not need to press ENTER to access the next address.

lf lhere is a valid character code in an address, it will be displayed between lhe address
itself and lhe cursor, otherwise a queslion mark is displayed.

All upper and lower case characle.s can be entered by use of the SHIFT keys. The only
exception is $ which is reserved as lhe character to access the command.

Graphics and User Delined Characlers cannot be enlered directly.

ln other words, any single character that appears on a key top and that can b€ accessed
by a single key prsss or by ona level ol shitt can be entered.

Now lype in the following message:

This is AMMON

(Use SHIFT + 2 tor lhe " marks). Having typed il in, mislakes includ€d, now revi€w the
message.

7.

Typ€ $

Type 6100

Tyæ ENTER

(Shilt and 4) to reente. the $ command.

the start address.

and hold ii pressed unlil the whole message is on the screen.

lf the messag€ is correct, you can now press ESC to return to th€ Prompt.

lf you have made a typing error, or if you want to put another message al a new starting
address, typ€ $, to reenle. lhe $ command at the beginning, in lho same way that the'M'
command is reentered. You will have lo enter the new add.€ss bslore rnaking your cor-
reclion, or starting you ôew message.

The.epeâting keyboard works as in the'M' command, to allow you to review a message
quickly.

1.5.4 I - lm.rt
ll, having wrinen a maçhine code routine, or having entered Data into memory, you lind it
necessary to add extra bytes in th€ middle of that routine, the lnserl command allows you
to insgrl up to 255 bytes at any point, and aulomatically moves up memory a specilied
a.ea of RAM by the number ol byt€s that you v,/ish to insert.

The lnsert command takes the lorm I rtta bbbb nn whcre I is lhe lnsert command modg,
rlar is the Hqx address ol the tirst byte of the inserlion, bàùb is the Hex address of the
highest byto in RAM of the block ot memory lo b€ moved, aM nr is the number ot bytes
to be ins€rted, in Hex.

Erampla
Pr6ss ÊSC to restore the prompt and cursor to the bottom line, and then, using the
M command, onter th€ following coosective valuss into memory:

6000 00
6001 01
€.Û202
6003 03
gic.

sodn or
6008 0B
60æ 0c
600D 0D
600E 0E
600F 0F

(Ihe values entsred into thêse locations are purely lor a demonstralion oi the lîsert and
Oelele commands, and, if run, will probably cause the CPC4ô4 to crash.

ln the above 6xample, lhe starl of the imaginary routine is 6000 and the end is 600F. We
will norrr ins€rt 5 bytos, lhe first n6w byte to b€ ât 600/l.

Press ESC to restore the prompt and cursor.

Tyæ | to get into the Insert mode.

Type 6004 lhe address ol the lirst byte ol the insertion.

Type 600F lhe address ol the highest byte 10 be moved.

Ïype 05 the number ol bytes lo be inserted (Hex).

At any time up to this poinl, you can press ESC to escape lrom this command mode, as
no change to RAM hâs occured yet. lndeed, if you make a lyping error al any time, you
musl press ESC and slart lhe command agarn.

lf you have entered the lnserl example correctly, you can now press ENTER to eflect lhe
insertion. The screen will scroll up one line, and the prompt and cursor will return lo lhe
bottom line. ïhe insertion has been completed.

Using the M command. check through the 21 locations from 6000- Addresses 6004 lo
6008 inclusive will now contain the value 00, and 60091o 6014 will contain the values 04
through to 0F.

When using the lnseri command on machine code routines, any absolute addresses in the
remainder of the routine thal referred to the area that has been moved will need to be
changed to maintain co..ecl operation of lhe routine.

1.5.5 O - Dolote
This command has the opposite eflect to lnsert, and takes the lorm D lart bbbb nn,
where D is the Delete command mode, aar! is lhe address ol lhe lirsl byte to be deleled,
bbbb is the address ol lhe highest byte to be moved down RAM, and nn is the number ot
bytes lo be deleted.

Assuming that the result of lhe lnseri example is stjll in memory,lel us now move lhe area
of RAM lrom 6009 to 6014 back lo its original place.

Press ESC to reslore lhe prompl and cursor
Type D lo enler lhe Delete command.

Type 6004 lhe start of lhe area to be deleled.

Type 6014 the end ol the area lo be moved.

Type 05 lhe number of bytes lo be deleted (Hex).

Type ENTEB lo ellect the delelion.

The prompt and cursor will reappear on the bottom line, and the deletion will be complele.

Now check through addresses 6000 to 6014. using the M command. the conlents of
these localions will be as they were boloro lhe lnserl example, and locations 60101o
6014 will have been loaded wilh lhe value 00.

Again, any absolule addresses relalrng lo the area of RAM thal has been moved by
Delete, will now need lo be changed.

1.5.64-ArorMoyo
This command will Elock Move a specilied area ol RAM, and takes the form A tlaa bbbb
cccc where A is lhe Area Move command, laaa is lhe present sla(address, bbbb is the

L

present end address ol the area lo be moved; and cccc is lhe new starting address.

Assuming thal the example used lor the I and D commands is slill in memory, let us now
move th€ whole area lrom 6000 to 600F up memory, lo starl at 6200.

Press ESC to restors the prompl and cursor.

Type A to enter the Area Belocale rnode.

Tlpe 6000 the start address ol lhe area to be moved.

Type 600F ihe end address of lhe area to be rnov€d.

Typ€ 6200 lhe new start address.

Type ENTER lo ellect the move.

The screen sc.olls up one lin€, and the prompt and cursor return to lhe bottom line. Ihe
rnove is complete.

Using the M command, check that addresses 6200 lo 620F have been load€d with lhe
sam€ values as those still remaining in addresses 6000 to 60OF.

This routin€ will allow you to move up or down memory, from any original $aning address
to any new slarting address, even il lhe new area overlaps tho original a.ea. The original
area (unless over-written by lhe move) is not changed.

Try moving lhe area lrom 6000 lo 6O0F to a new starl address ol 6008 and then move it
back again.

A uord ol wlmlng. Mosl AMMON commands that allow you to aller lhe values in memory
locations will also operate on the area ot memory conlaining AMMON. Always check
carelully thal you are not aboul to overwrite AMMON which uses nearly 7K lrom the Start
Address given on loading. See Section 1.10 lor more details of how much memory is used
by AMMON.

1.5.7 F - F
The Fill routine allows you to enter the same byte value into a given area ol RAM, and
takes the lorm: F mtr bbbb xr, when latt and bbbb are the start and end addresses
respectively of the specified area, and u is the value to be entered.

Press ESC to restore the prompt and cursor-

Type F to enter lhe F command.

Tyæ 6020 lhe slart address.

Type 6100 the end address.

Type M the value to be entered. (Hex).

Type ENTER to eliect the Fall.

The screen sc.olls, and lhe prompt and cursor appear on the bottom line ot lhe screen.
The till is complete.

Now us€ the M command, with ENTER kept pressed, to verily that each byte lrom 6020 to
6100 lnclurlv. has a value of M.

'r 0.

1.5.E P - Pdnl Hcrcnphlcs Dump
Ihis command allows you lo produce a Hex Dump of lhe contents ol any section ot
memory onlo the screen or prinler, or lo produce a graphics/ASCll Dump lo the screen
only. lt takes the torm P !!!! bèbb where P is the command name: !tt! is the Hex Ad.
dress of the lirsl byte lo be printedi and bbbb is the Hex acldress of the last byle lo be
printed. The display as shown lhus:

EliifloÊrcl elcrl?

"*ïfii"fiË
tf'"'S

ÊtÊtctÊt ttl stl ?FÉloËa 'c3 aÊ Bslûflt_Ét c3 J-6 EA
ED .dlt I C3 Sel elsc3 ?c B9 C5 C9(:3 t€l EA DS Ç9

Each line shows lhe Hex contenls of eighl successive locations. wilh the Hex address of
the lirst byte shown in the lell column. The routine will only print complete lines, and if the
end address that you specity is pa.t ol the way along a line, it will prinl up to the end of
that line.

lf lhe Prompl is not visible on the boltom line ot the screen, press ESC, olherwise access
the command by pressing P followed by lhe address from which you want lo sla.t lhe
display. It you want an open-ended screen display only, lhen press ENTER; bul il you want
Prinler output. you musl deiine the address al which lhe display will stop. Ënter that Hex
address tollowing the start acldress, and press ENTÊR.

You will now b€ asked to select Hex or $ (ASCll) by pressing eilher'H' or SHIFT + 4. ll
you only sp€cified a slari address, bolh options will only give a screen output ol up lo 16
lines and then wail lor ENTER io conlinue. lf you typed a sla(and an end address, the
Hex oplion lhen asks tor printer requirements. but lhe $ (ASCll) option will only give a
screen display as ALL 256 ASCII and Graphic characlers are displayed, and most printers
will not cope wilh the graphics o. will lry lo interprel the control codes.

ll you want a prinler oulput of the Hex Dump, press y in res@nse to the question
PRINTER (YrN). While using the printer, you can slop the command before the specified
end address by pressing ESC at any lime.

1.5.9 Z - Dlsllr.mblcr
This command will disassemble any parl of RAM or ROM. either to lhe screen or to lhe
Printer. lt provides a display that includes the Hex address of the lirsl byte ol lhe instruc-
tion, lhe Hex values ol the bytes thal relate to that instruction and the 280 mnemonic for
thal instruclion. The lull set ol 280 mnemonics can b€ disassembled.

For access to the ROM contents, see section 1.5.20 and 1.5.21 on ROM enabling.

The command takes lhe form: Z !!r! bbbb where Z is the command mode, raa! is the
hex starting address and bbbb is lhe her end address of lhe part ol memory you wish to
disâssemblê.

lype Z

Type 0000

to access the command

the slart address

You can now either type in an end Hex address where you wanl the disassembly to stop,
or you can press ENÎER to achieve an open-ended disassembly in the same way thal the
P command operales.

11

ll you specily an end address, you will be given the same Screen/Printer oplions as described
in the P command above. lf you attempt to disassemble any part ol AMMON, an error
message rlllvAllD ADDRE$S" is displayed.

The disassgmbly will app€ar as follows:

agil>

I.GEÊt ÊtBA

rFs
t_89

BÊctr lrtore

T

5H
T

TiH
T

F
t<

BC - ?tr,'(c).c
El5A€tÊsaeBS?C
EC
Bâ"1GBAlEt
DE
BgET'F9F.1
HL
BACÊESC>

t'V
5Is

z(
?

for EHD

When using lhe screen display, 16 lines of disassembly are shown lollowed by the
message:

ENTER lor morr, ESC lo. cnd

Pressing ENTER will display the next 16 lines unless the end address is reached, when lhe
Prompt & Cursor will be returned.

Pressing ESC in resænse to the above message will also relurn you to the Prompt & Cur-
sor.

lf you are disassembling to a printer, lhe rouline coniinues uninterrupled until it reaches
the end address. The printer can be slopp€d early by pressing ESC at any time.

All disassembled addresses and values are in Hex. Relalive iumps show the address to
which the jump will 9o. with lhe oflsel value shown wilh lhe hex coding for lhal instruction.

ln both the Z and P commands. il the printer is not connected, is oll line or otherwrse ap
pears BUSY, then the printer oplion fails afier 3 seconds and ihe normal prompl and cuÊ
sor reappear.

1.5.10 N - l{umb.r Convort.r
This routine will convert Hex numbers to Decimal or vice versa

The Number command.Type N

12.

The screen will display:

NUMBER H/D?

Type H (lor Hex) or D (for Decimal) to indicate the number system of the number you wish
to conved.

Type H lo convert a Hex number to Decimal.

The screen will scroll, and show 'H' (lollowed by lhe cursor). Now enler lour Hex dagits.
(You must enler leading zeros when enlering a Hex number).

Type 4000

Type ENTER

The display will now showi

H 4000 = 16384

with the prompt and cursor on the botlom line.

To convert trom Decimal lo Hex, Type D instead ol H in response lo "NUMBËR H/D?",
and enter your decimal number, wllhoul leading zeros. Again lype ENTER to produce an
answet.

1.5.11 E - Accsss lo Edltor Assemblat
Press ÊSC lo restore the Prompt & Cursor to the boltom line ol the screen and then lype
E followed by ENTER. ll the Assembler is resident in memory it will be accessed, other-
wise the Monitor's Prompt & Cursor is displayed. A lull check ol the Assembler is rmpossr-
ble, and it is up to lhe user to ensure lhal the Assembler and its associaled lables and
burters have nol been overwritten by Monitor commands. ll in doubt, you should reload
the Assembler lrom Disc or lape-

1,5.12 Example progiam lor runnlng & &bugglng commands
To demonslrale the next live Monitor commands, use lhe il command lo enler the lollow-
ing short program al 6000 Hex, or ai any other convenient localion.

N.B.
ll you have loaded AMMON on its own into your CPC464 and have positioned il as hjgh in
memory as possjble by pressing ENTÊR in response to Slart Address?" when loading.
lhen you should find lhat the memory locations at 6000 Hex will be lree to accept lhis ex-
ample

6000 01 00 00
6003 11 00 00
6006 21 00 00
6009 03
6004 13

6008 23
600c c9

Start 6000
Ênd 600C

LD 8C,0000
LD DE.OOOO

LD HL,OOOO

INC BC
INC DE
INC HL
RET

Clear EIC

Clear DE
Clear HL
BC=BC+01
DE=DE+01
HL=HL+01
Relurn

13.

Having entered Hex codes. go back to 6000 and check lhat the codes are correct. (Type
M 6000 and check the contents ol each location).

ll as recomm€nded thai you r^/ould normally Save a machane code program b€lore running
it in case it c.ashes, which it is certainly likely lo do unless you are an experienced
machjne code p.ogrammer. ln lhis case. there is no real poinl in Saving the program, but
il lou wish lo do so, reler to lhe seclion on "The Monitor in practice".

The last line ot the.outine is a RETURN instruclion which il is usual to use at the end ol a
Machine Code rodine, to relurn you lo the Calling program (lsually Basic).

When you are satisfied that you have enlered the above program correctly, press ESC to
restore the Prornpt & Cursor.

1.5.13 B - 8..akgolr
This command allows you lo lemporarily inle(upt a machine code program at any point,
and return control to lhe MONITOB. so lhal you can inspect the values in the CPU
regrslers, and in RAM, and make co(ecllons as necessary.

ll takes lhe lorm B !!r!, where B is the Breakpoini command mode, and aaa! is the ad-
dress ol the instruction lhat lhe break will .eplace. (aaaa musl be the address ol the llr3l
byte ol a mulli-byle instruction).

The Op. Codes in lhe three add.esses aaaa, !!!! + I, and rara + 2 are aulomatically
stored by AMMON, and lhese addresses are lhen loaded wiih the values CD OD BF
which constitutes a CALL to the entry æinl ol AMMON. lt must be a C.ALL lo maintain
correct operatioo ol the Stack.

On entering AMMON at this address, the values in the CPU Registers are stored within
AMMON: the Slack Pointer is set to the Monilor's Stack: and the message "SPACE for
Monitor" is disdayed oo the bottom line ol lhe screen, in addition lo lhe screen display
that your program has created. The Monilor will now wail unlil you press SPACE, when it
will clear lhe screen and display the Prompt & Cursor.

You will no$/ be able to use any of the MONITOR commands lo check or alter the rouline,
belore retu.ning control to lhe routine at the point at which lhe break occured. As the
MONITOR uses its owr inlegral Stack separale from the Program Slack, there is no
danger ol over-wriling the Program Slack during a Breakpoint.

Belo.e running the example in seclion 1.5.12 enter a Breakpoinl at address 6C109. This will
have the ellect ot siopping the program atter the Registers BC DE and HL have been
cleared, but belore they are incremented.

ll lhe Prompl is not visible on lhe bolom line ol the screen, press ESC, otherwise

ïype B
Type 6009

lhe breakpoinl command mode

the breakpoint address

Tiere is no need to lype ENTER, as the Breâkpoinl is set atler typing the lourth digil. The
screen will sc.oll, and the prompt will appear on lhe botlom line.

14.

Using lhe M command, check lhal 6009 to 6008 now contain CD OD BF in place ol 03 13
23, the latter having been slored lor laler replacemenl.

1.5.14J-Jump&Execule
The Jump command allows you to,ump oul of the control ol the MONITOR to lhe slaltang
address ol any routine that you write, and il takes the lorm J a!!a where J is the Jump
command mode, and aaat is the start address of your program.

You can run your Machine Code prog.ams eilher wilh the Monitor's J command, or by
returning 10 Basic and using the CALL command. Eilher way, all lhe Monilor's lacililies are
available to you afier a Breakpoint.

ln lhis example, we will use lhe J' command.

Press ESC

Type J

Type 6000

lype ENTER

to resto.e lhe prompt and cursor

to enter the Jump command.

the starl address.

The screen is cleared and the rouline will run, and then access lhe Monitor wilh the
screen message 'SPACE for Monilor".

The sequence ol events on exgcuting a J command is:

i) lhe screen is cleared

ii) your program s screen Mode is sel

iii) lnterrupi status is restored

iv) the Stack Pointer is set to the program Slack

v) the start address is pul into lhe Program C,ounter and lhe pro-
g.am is execuled.

the Monitor uses ils own integral Stack (see Section 1.7) which is set on enlry to AMMON.
therelore the program Stack which is sel by the initialisation rouline when your Crc464 is
switched on must be reset before your program can be run. This is done for you by lhe J
command. The use of two Slacks helps to make AMMON invisible lo your programs.

Having run, lhe example program will have encounlered the Breakpoint at add.ess 6009.
and "SPACE lor Monilor" will be displayed on the screen. Press the SPACE bar to access
AMMON.

The first operalion after a Breakpoinl should always be lo restore lhe correci byte values
to lhe addresses where the break occured.

1.5.15 K - Brsakpolnl Roslore #
This command restores the co.rect values into the lhree byles overwritten by the Break-
point command.

Type K

The screen will show K 6009 and will scroll up one line, displaying the prompt on the bot-
tom line. There is no need to type ENTER. Using ihe M command, verily ihal the original
codes have been replaced in addresses 6009 lo 6008.

15.

Only ONE Breakpoint can be entered at any time, so a Br€akpoint Restore (K) command
musl be exgcuted b€lore the nexl Breakpoint (B) is set, and it is recommended that a
Breakæint Restore (K) command is keyed immediately alter a Breakpoint has been en-
countgfed.

lf you enter an incorrecl breakpoint with ths B command, type K immediately alteMards
lo resto.e the original values to the incor.ecl breakpoint address, and then reiype the
Breakpoint.

The K command can only restore the hrl anlarad Breakpoint.

Let us now inspect the CPU registers, to make sure that the prog.am is working as we
expecl.

1.5.16 R - R.!l.l.r dlrplry
It the prompt is nol visible on lhe bottom line ol lhe screen, press ESC, otherwise

Tvpe R

The scr€en scrolls up. automatically displaying the CPU register conients thusi

?*

There is no need to type ENTER.

As you will s€e, the Program Counte, contaans 6009, lhe address al which the Break.
poinl occurred. The BC, DE and HL regisler pairs will all contain 0000. ln lhis example.
these are the only registers lhat we are interested in

The FLA6 regislers are shown in BIT lorm, with lhe purpose ol each llag indicated
above. ll a llag is SET. a 1 is indicaled. and if rt is reset, a 0 is shown

BFF-IS
ADEBBIIFA
6CtÊS

A, F,B'ç',D'E'H, L,
Êr
BCI}T
HL
I)<ïï
SP
PC

16

The CPU registers ar€ displayed with their contents shown in Hex.

When lhe Monitor is entered at a Broakpoinl, the values in the Begisters immedialely
prior lo lhe Breakç,oint are stored, so that lhe operation ol your routine can be chec!(ed,
and corr€ctions to lh€ routine can be made before continuang.

Having a) encountered one Breakpoint, b) restored th€ correcl values atter lhe break,
and c) verilied that the CPU regisiers have lheir correct values, we will now enler
another Breakpoini, and continue the routine.

It the prompt is not visible on lhe boltom line of the screen, press ESC, olherwise,

Typs I 6008

This will set a new Breakpoint atler the BC and DE register pair have been incremenled,
bul before the HL pair is incremented.

t.5.17 C - 8rclkpolnt Conllnuc
The command allows you to &nlinue lrom a Breakpoinl. and is executed by typing C
lollowed by ENTER. You can escape to the Prompt by pressang ESC befo.e ENTER. The
program will continue as il nothing had stopped it. the only informalion lhal is losl to
the program is the contents of the Screen RAM.

The screen is cleared; the program Stack is reset; and the CPU registers are re-loaded
kom iheir dala block belore lhe Breakpoint address is put into the Program Counter,
and exêculion is resumed.

Type C
Type ENTER

Th€ routine will run on until il reaches the nexl Breakpoini, and will lhen display "SPACE
lor Monitor".

When the Prompl appears afler pressing SPACE,

Type K to restore the byles occupied by the Breakpoint.
Type R io display lhe registers.

You can now verify thal lhe Program Counler contains 6008, the BC and DE register
pair contain 0001, havjng been incremented, and the HL pair slill conlains 0000.

When a routine encounters a Breakpoint, it returns control to the MONITOR with a CALL
operation, the return address being stored on the Pllgrlm Stack, for use by the Break.
point Continue (C) command. F{aving encountered a Breakpoinl and studied lhe CPU
regislers and/or memory locations, one of two siluations will occur:

1) Everylhing will be as you expect, and the program is correct to thal point. ln lhis
case, you would normally resiore the Breakpoint bytes ('K command) and use the
Breakpoinl Coninue ('C' command) to continue the program to a new BreakF,oint.

ol

2) An error will become evident, in which case you would track down the error and
correct it, and then, leaving the current Breakpoint set, use the 'J' command to.e.
run the program up to the same Br€akpoint, lo chgck lhat your correclion rs

successful.

17.

The Program Stack operation of the MONITOR allows you to do this providing lhal, at
the Breakpoinl, there have been an equal number ot PUSHeS and POPS, or CALLS and
BETS. ll lhe Program Stack is nol balanced at lhe Breakpoint, you will have a
cumulalive slack imbalance every time you use lhe 'J' command afler a Breakpoint (but
noi if you use the'C'command). ln this case lo reslore lhe Stack to normal once you
have lraced an error, RÊTURN to Basic (Y' command) and re.access lhe monilor lrom
the beganning, then use lhe 'J command lo.un your program up to the Ereakpoint
again.

Having set a Breakpoinl in a program, you can either use the J command to run the
program, or you can BETURN to Basic, and run lhe program lrom the CALL command
in Basic. For example, il you have wrillen some Machine Code lhal is lo be accessed
trom a Basic program, you can sel a Breakpoinl in the Machine Code using AMMON,
and lhen BETURN lo Basic and run lhe Basic program. When lhe Breakpoint is reached
in the Machine Code, AMMON will be accessed, and lhe Breakpoint frntinue command
(C) will allow the Machine Code lo resume and eventually RETurn to the Basic program
thal CALLed it

The MONITOR has been carefully designed lo allow this tree inlerchange belween Basic
and mâchine code, wilhout upsellrng the Stack.

1.5.1E T - Traco (Slnglo Slep)
The Trace command allows you lo execule Machine Code in ROM or RAM one inslruc-
tton al a ttme. or in ce(ain specified blocks. But at ALL times, lhe execulion of the
Machine Code is slriclly under the conlrol ol lhe Trace command, and a crash is almost
rrnoossible.

Commands such as LDIR (a selt repeating block rnove) can cause a crash by over.
wfllrng AMMON, as can any inslructron that wriies rnlo lhe memory occupied by AM_
lvloN Allering the value ol lhe Stack Poinler could also overwrile the Monitor. AMMON
uses nearly 7K trom the Slart Address given on loading, but see Seclion 1.10 for fuller
detarls.

The comprehensive screen display lhroughoul lhe Trace command gives a permanenl
disDlay ol lhe CPU regisler conlenls. a disassembly ol the currenl and the next instruc-
tions, lhe conlenls ol the last five stack localions, and lhe contents of specified memory
locâlions.

HJ&T "" HoP
rio{t "l- fr€l F{oP
rT{ {ltl3?
A',r.'B,ç,t,E,H, L,

tslAIDitFABF{'AE?

c€rr'Ët
DDABF'.leA*?F 8S

AT'ft(:
NE
HI..

IXïrJ
SP
PC
;-ElÉrçl€l

EtEl €r€r {tËt [l€t
çID, BF 4D .tTF
{tÉt ÊtÉl 44 ss

€t

o
frs c3

18.

The Trace command is accessed from the Main Monitor by typing T (when th€ prompt
and cursor are visible on the bollom line ol the screen) followed by the a.digit Hex ad-
dress ol lhe instructjon trom which single stepping is to start. It you do not specify a
Hex address, but press ENTER immedialely alter typing T, the Trace command rs ac-
cessed, and the address shown agaanst rc in the register display is used as the starting
addr€ss. lo.eturn lo the Main Monitor from the Trace command, press ESC. The
screen will clear, and lhe Main Monitor's prompt and cursor will appear on the bottom
screen line. All register values are passed between the Main Monitor and the Trace
command, and you can therefore use all the available commands ol the Monitor to
debug your machine code.

ïhe Trace command contains ils own sel of commands which are separate from the
main Monitor commands, and allow control over

a) execuling instructions singly;
b) running on to a Breakpoinl (not the same as a Breakpoinl set by the main Monitor);

skipping to the end of a subrouline.

Any section ol code thal will only operale correctly when run al lull speed (e.9. timing
loops, sound output or inlerfaces to external equipmenl) will nol operate correclly in the
Trace command as each instruction is decoded and execuled separalely. The main
Monitor commands for setling a Breakpoini and running lhe code should be used in-

stead.

To demonstrale ihe trace command, enter the lollowing short rouline using the com-
mand in the main Monitor to enler the Hex code shown rn bold type.

(ll you have already accessed the Trace command. press ESC to exit lo lhe main
Monitor before entering lhe example program).

and

c)

64 Cx)
â4(7c) 2l2Cê1
è4r1:r I t3412
.54{J6 7A
ô4rlz cDto64
64{)A 78
64.18 CDIOé4
64ôE OO
64ûF OO
Cr4 1 (:.) 4F
6411 E6FO
é4r;i lF
il414 lF
641E lF
6416 lF

Orll,)5
(j{:r 10
(){:r 15
O{:r2(:l
(l(Jî5
(:x:,3{l
(-)rl f, ij
i:l(14(:)
(J1145
,.:xi50 5ljËi I
{l{:)55
0(:)6r)
(J(l6T
r-,{:t7 ù
{:}Cr75

oF6 ô4(:rÙll
L.D t{L.,54:CH
LD DË:, 1 if,4H
L.D r.1t D

f-:Al-l-- Ê'4 l QH
LD /\:, tf
ËAL. t_ À41rlFt
r'roF'
HOF
LD C. A
AND {:,FC)H

F:RÊ
F:RA
FRA
RRA

19.

64t7 eD2lè1
b4tâ 79
64tE E60F
64rD CD2l64
64?17 C9
64?1 C630
é4?f, FESA
6425 3802
64"7 Cé'07
64?9 77
64rA 23
64?B C9
642C OO
64:D OO
ê4tE OO
64"F OO

a-)(r€lô
{_10€}5

{:to9o
oo95
.i 1c,L)
ol{}5 suE?
{:r 1 1(]
(11 15
{-} 1 ?C}
{:} 1 ?5
o1f,il
(11f,5
u 14{}
o143
O15{J
o155
r-l16C)

CALL 64:1H
LD A, C
AND {lFH
CALL 64?IH
REÏ
ADD f:ÙH
CF. f,AH
JR C. +1
É)DD 7
LD (HL) . A
INC HL
RET
DEFB (:)

DEFB Q

DEFE iJ

DEFB (:)

END

The code from ô400 to 640D convens the value held in the DE register pair into lour
ASCII characler codes representing lhat value, and puls the lour characler codes into
memory al 642C (this localion held in HL). The code starling at 6410 and at 6421 are
subroulines called during this p.ocess.

Having entered the code press ESC to reslore lhe nain Monilor Prompt and then type T
lollowed by 6400. The Trace display will be lormed in a similar lashion to that shown
abov€. The STEP mode is automatically selected, and is shown at lh€ lop ot the screen.
Below thal is a disassembly ot the next instruction to be executed. The Register display
shows the current regisler conter s (which could be anything as no instructions have
been executed yet). The Stack display shows the last live pairs ol bytes on the Slack,
with the last value placed on lhe Stack indicated by the '.
The display line al the boltom ol the screen gives a window onto memory locations,
and the starting add.ess can be changed al any lime by lyping ll lollowed by a lour
digit Hex address. ln the example above, it would be useful lo see a display ot the
m€mory that will eventually contain lh€ four ASCII characlers, so type M642C. The ll
display is updated as soon as lhe fou.lh digit is entered and you do not need to press
ENTER.

While in lhe Trace command, tha address ol the next instruclion can be changed at any
time by iyping S follow€d by the nsw H€x address followed by ENTER. This restores
STEP mode and updates the display ready for execution of the next instruction ai the
new address.

To execule the tirst instruction (LD HL,ô42CH) simply press ENTER. The display will now
updale and show ô42C in HL. Aongside that value are shown ihe conients of the bytes
al and immedialely following thal a(bress. You will see that lhe disassembly of the lirst
inslruction has scrolled up one line, and lhal lhe nexl instruction (LD 0E,1234H) is

displayed on the second disassembly line. the upper of the two Disassembly lines rs

always the instruction iust execuled, and the lower is always the instruction about to be
executed.

Continue pressing ENTER and STEP through the whole routine, stopping when the NOP
inslruction at address 640E is displayed on the second disassembly line, and observe
the effect on the display of each instruction. the regisler display of the PC value will
ALWAYS show the address of the NEXT instruction lo be executed, and the Stack
display will only change when the Stack is used (in this case lhe CALL and RET anslruc.
lion).

At any tim€ you can exit from the Trace command back lo the main Monitor by pressing
ESC. The screen will clear and the normal Monitor Prompl will be displayed at the bol-
tom ol the screen. You may find that you have lo press ËSC more lhan once lo do this.
For example, if you were in the process of typing in a command within the Trace lacility,
the tirst ESC wlll clear that command. and the second ESC will access the main
Monitor.

You may have lound lhat single sleppinq through lhe lwo subroulines became tedious,
after you had stepped lhrough them once, and proved thal they did work. To speed up
this process the Trace command contains two funclions ihat can be used io
automatically step lhrough sections of your program that have already been proved.
They are:

(i) BREAKPOINT
Do not conluse this Breakpojnl function with lhe BBEAKPOINT command in the main
Monitor. Selting a Breakpoint while an the lrace command does nol aller your program,
as it does in lhe Main Monilor. The Breakpoint address is stored, and alter each inslruc.
tion is executed by the Trace command, lhe address ol lhe nexl inslruclion in your pro-
gram is compared wilh lhe Breakpoint address. lf the program address is nol equal to
the Breakpoinl, the nexl instruction is decoded and automatically executed, until lhe
program address is equalto the Breakpoint address, whereupon the whole display is updaled
and the slEP mode is accessed.

To use the above example lo demonstrate the use ol the Ereakpoinl, press ESC to ac-
cess the main Monitor and use the l{ command lo wrile 00 inlo the lour memory loca-
tions from 642C Hex. (You do not need to do this lo use the Breakpoint, but in this ex.
ample it will help to clarify what is happening by clearing lhe ASCII codes already writ-
ten there). Re-enter the Trace command by typing T6{D and then type BSillrE, followed
by ENTER. This has put the Ïrace command into BBEAKPOINI mode and this is
displayed at the top ol the screen.

Pressing ENTER again will cause the program to be executed under lhe control ol the
Trace command until the Breakpoint is reached. The display is then lully updated and
STEP mode accessed.

While the program was being executed, the only parl ol the display to be updated was
the value ol PC in the Flegister display. Should you have set a Breakpoint al an address
that lor some reason is never reached (perhaps a conditional instruction that has
jumped elsewhere) the constantly changing rc value will indicate that the command is
slill running. ln this case you can escape by pressing ESC, which will access the STEP
mode again and update lhe display showing lhe address at which the Break occurred.

You may lind that this leaves unwanlecl addresses or register conlents on lhe program
slack, and an incorrect value tor SP in lhe register display. This will not allect the
operation ot the Monilor as il uses ils own slack. The simplest way to restore lhe Stack
Poinler lo its normal value (usually as sel by Basic) is lo relurn lo Basic (Key Y) and
then to reaccess the Monitor with I MON.

(i0 sKtP b nET
This funclion can be accessed al any time while in the STEP mode. Type n and press
ENTER. The top line ot lhe display will now show STEP SKIP lo RET, Pressing ENTER
again will cause the Trace command lo execute your program aulomatically, and stop
(in the STEP mode) when it has executed the RET instruclion associated with the noxl
CALL inslruction. While the subrouline is being execuled. ihe display of the PC regaster
value is lhe only part of lhe display to be updaled. On completion ol lhe subroutine the
whole display is updated and the normal STEP mode is accessed.

To demonslrale, type 56400 (assuming you are still in lhe TBACE command) tollowed by
ÊNTER. The display will updale and you will be ready to single slep trom address 6400.
Press ENTER three times to execute the first lhree instructions of the example program.
The nexl inslruclion will now be CALL 64'10. Press R lollowed by ENïER, lo access the
SKIP to REI rnode.

Press ENTER again. and lhe subroutine al 6410 will be execuled in its entirety, including
the lwo CALL instructions within il, and lhe display will updale showing the LD A,E in-
st.uclioo al640A as the next instruction on the second disassembly line. and the
original CALL on the line above. The normal STEP mode wjll also be indicaled at lhe top
ot the sc.een.

You can now conlinue stepping through lhe program using the ENTER key. So press
ENTER to execute the LD A,E, and lhen press ENTER again to execute the CALL 6410.
The next instruction will be shown as LD C,A al address 6410 and is the first instruclion
in the subroutine. ll you now press R and ENTEF lo access lhe SKIP lo RET mode, a se-
cond press on ENTER will execute the program up lo lhe RET associated wilh the norl
CALL. The naxl CALL is at address 6417 (CALL 6421), and execution will stop showing
LD A.C al address 641A as the nexl instruction. Follow this through by relerring to the
program lisling to clarily whal has happened.

lf you use lhe SKIP to RET lunction, and a RET inslruclion is found bcloro a CALL in.
strucliofl, lhat RET instruction will cause aulomalic execulion lo stop and the STEP
rnode to be acc€ss€d. This can be demonsirated by single stepping through the exam-
ple program using the ENTER key in normal STEP mode, until an instruction in the
subrolline al 6421 is shown as the nerl instruction- Using the SKIP lo RET mode at this
point will automatically execule lhe program until lhe RET at 6428. The routine will stop
in the STEP mode, showing lhe nexi instruction as being the one following lhe CALL that
called the sub.outine.

To summarise SKIP lo RET, aulomatic execution conlinues up to and including the RET
inst.uclion associaled with the nexl CALL, OR to the nexl RET if a CALL is not en-
counlered in the meantime.

ln the same way as the Z (Disassemble) command in lhe main Monitor gives an 'lN-
VALID ADDRESS' error il you try lo disassemble lhe Monitor. you cannot single slep
lhrough the Monitor program. the same efior message being displayed, lf this error con-
dition occurs while you are in the Trace command, an automatic exit to lhe main
Monilor is made, and the main Monilor's Prompl is shown al the bottom ol the screen-

22

REGISTER POINTER
You will nolice that an inverse video (àl) is displayed immediately to the lelt ol the
regisler contents column. This is the Register Pointer and is used to enable the conlents
ol a registe. pair to be easily changed from lhe TRACE command. The pointer can be
moved up or down by using the curso. control keys. To aller lhe contenls of a regisler.
move the Pointer until it indicales lhe required registe. pair, and lhen press lhe COPY
key. the currenl value is shown on lhe botlom line ol lhe Trace display.

You can now either press ENTER lo restore lhe same value or lype in a 'l dagit Hex
number to change lhe register value

This facilily only operaies in the STEP mode of the Trace command and can easily be
used while debugging soflware using the main Monilor. Access the T.ace command by
typing T followed by ENTER. All register values are passed lo lhe Ïrace command. and
aller making your register alterations. exit to the main Monitor by pressing ESC. Again,
all register values are passed back lo the main Monilor.

ROM and INT sirtus
The ïrace screen displays the staus ol ROMS.

The display ROtl 00 shows the currenlly selecled Upper ROM
andu0

L 0 shows the enable stalus of the ROMS. (0 = OFF)

These will change il a ditlerent Upper ROM is selecled, or il an OUT (C),r command to
Port 7F hex (i.e. B' = 7F) is slepped through. Amsoll's FIRMWARE SPECIFICATION
(SOFT '158) gives more delails on ROM paging and seleclion.

The INT display will change il an El or a Dl inst.uclion is stepped through.

lf your program uses roulanes that must b€ run at lull Machjne Code speed lo operate
(e.9. timing loops or sound output), you will need to escape trom the Trace command by
pressing ESC and use the main Monitor commands to run lhose roulines properly. All
lhe register values are passed back 10 lhe main Monilor, and you can then set a normal
Br€akpoint (usin9 lhe main Monitor B command) and use lhe C (Continue) command to
continue execuling your program in real time lrom the poinl at whjch Trace stopped.

Having encountered the Breakpoint, use K to clear the Breakpoinl, and access ihe
Trace command by lyping l lollowed by ENTER. All lhe Register values and the address
ol the next instruction sre passed back to lhe Trace command ready for you to continue
Single Stepping from lhe address shown against PC in the register display.

1,5.19 S - S.lrch
This command will search lor up lo 5 consecutive Hex bytes or 10 consecutive ASCII
characters, and display ths add.ess ol the tirst byte ol lh€ sequence each time ii oc-
curs.

Typ€ S followed by a H€x start address. plus an optional Hex end address. ll no end ad'
dress is given and ENTER is pressed alter the slarl addres5, then FFFF is assumed as

th6 ônd address. The ROM enabl€ states (set by U and L described below) are laken in-
to account when sea.ching.

Having enlersd a start address and an 6nd addr€ss/ENTER, select H (Hex) or $ (ASCll)

23.

oplion lo de{ine what is to be searched for. Pressing H will allow up to 5 Hex values (2
digits each) lo be specified. Do not press ENTER between each value, but only when all
values are entered. The Search starts automalically alter the lilth value. Pressing SHIFT
+ 4 ($) will allow up to 10 ASCII characters to be defined. Again ENTER starts the
search il less than 10 characters are delined.

ll more than 16 locations are lound to be successful, ihe Search stops and waits for
ENTER before continuing.

1.5.20 L - Lou.r ROM rccea!
Press ESC to access the prompt and cursor il it is nol already on the bottom screen
line. Then press L. An inverse video "L" is displayed, along wilh '0' or '1' to indicate
the cu.rent lower ROM enable state (1 = enabled: 0 = disabled). lf you do not want lo
change the state. ESC will return you to the prompt and cursor: but pressing '1' or '0'
will set that ROM enable state l.or the purposes of the Monitor. ll you enable the Lower
BOM, the Monilor commands that access memory (e.9. M. Z, $, P, S etc.) will acess lhe
lower BOM and nol the RAM when addressing locations between 0 and 3FFF.

1.5,21 U - Uppcr ROM rcc.rs
This works in a v€.y similar way to L, but for the currenlly selected upper ROM, Press U
and lhe currently selected ROM numbe. (in Hex) is displayed along with '0' or 'f io give
its enable staius. Pressing '1' or '0' will set thal enable stalus.

To change th€ currenl Upper ROM selection press ESC to restore lhe prompt and cur-
sor, and then press CTRL + U. This will display the currently selected Upper ROM
number (in Hex). ll you do nol want to change the ROM number, press ESC. but to ef-
fect a change, type in the new ROM select number as two Hex digils (e.9. 07). This will
select lhe new ROM if it exists, and enable it.

When eilher Basic or the Assembler are accessed, lhe currenlly selecled ROM delaulis back
to ROM 0.

Please also read the s€ction on ROM STATES for more inlormation on ROM/RAM states.

1.5.22 Y - R.tum lo Blslc
The Monitor allows you to return lo Basic so lhal you can debug machine code lhal is

accessed as a subrouline to Basic by the CALL command.

Press ESC to .estore the prompt and cursor.
Press Y, which will display "Return to Basic"
Press ENTER to €xit from ihe Monilor.

To re-access the Monilor lrom Basic, use the External Command I MON as described in
seclion 1.3.

1.0. INTERRUPTS
As well as the Interrupt stalus being shown in the Ïrace display, the lnterrupt slatus is
maintained lhroughout the Monitor. ln other words, il al a Breakpoint the lnlerrupls are
disabled, lhen they will maintain lhat stale when a 'C' command is used to contrnue
alter'the Breakpoint, unless you have single stepped through an El inslruction.

24.

lnterrupts are enabled on exit to Basic or to lhe Assembler.

To allow Breakpoints in a rouline that has divened lhe lnlerrupl routine (ie. changed the
JP jnstruction at 0038). the normal system default values at 0039 and 0034 are stored
in the Monitor when il is first loaded. This default value is restored on exit to Basic or
the Assembler.

'1,7 ROM llrlca .nd thc STACK
Although the Crc464 requires thal the BC registers contain lhe currenl BOM state and
Port number al ALL iimes when inlerrùpls are enabled or when O/S Calls are made, the
Monitor has been written in such a way lhat Breakpoints can be enlered in your pro-
grams at points where this is not true. Equally the TBACE rouline will operate wilh ANY
value in ANY register without crashing. To do lhis, and to allow ROM paging when lhe
Monilor resides below 4000 (i.e. underneath lhe Lower ROM), certain Monitor operalions
MUST be RAM based.

To avoid conflicting with programs lhal occupy the normal free area ol RAM, parl ol the
Machine Slack area has been 'taken over' by the Monilor lor ils RAM based roulines.

The slack area reserved by the CPC464 is trom BF00 lo BFFF. and ihe Monilor uses lhe
area from BF00 to BF2F for lhese RAM based routines. The Monitor also uses iis own
Stack separate from the program Stack. and this is also based at lhe lowe. end the
Stack page, from BF30 to 8F96. The remaining Stack area from BF97 to BFFF is lree
lor your program to use, and although lhis is a reduced area lhere are some 104 byles
(52 pairs ot bytes) lor program use. ll your program should use more than this lhen the
Monitor will not crash, but the bottom ol your program Slack may be corrupted by lhe
Monitor.

As il is possible to enter the Monitor lrom a Breakpoint wilh a non-siandard value in 8C'
lhere is now way of checking whelher your p.ogram has enabled or disabled eithe. of
the ROMS before that Breakpgint. therefore. at a Breakpoint, lhe stored ROM slate as
shown by the U and L commands is not updated. However, in the TRACE command, il
an OUT (C),r command io Port 7F is detecled as lhe currenl instruclion, this is
simulaled, and the ROM stale display is updated.

1.8 Scrâ.n irodcr
On entry lo lhe Monitor, pressing SPACE will not change the screen mode from thal
which your program had set. lt is possible to change the sc.een mode lrom within the
Monilor by using CTRL + I lor Mode 1 or CTnL + 2lor Mode 2. Any change made
will be elfected by use oi a routine in lhe Lower ROM which has the ellect ol destroying
many screen parameters (e.9. cursor localions and screen colours) lor all screen win.
dows, and these paramelers aflect you. program as well. The original program screen
mode is reset after a J or C command.

Providing that you can use the Monitor salislactorily in lhe same Mode as your program
(i.e. wilhoul changing Modes), the Monitor is designed to retain as much ol your pro-
gram screen data as possible. This is done by using a dilferent screen window or
Slream wilhin the Monitor lrom your prog.am. Normally the Monitor uses Stream T lor
all ils screen oulput, but any ol the Streams (0 to 7) can be delined as lhe Monilor
Slream.

* (SHIFT + O is used to change Monitor Streams, and lhe exisling Stream
numbe. is displayed. Type in a single numbel (0lo 7) to change Streams.

The new Stream is selecled. and on that Stream,
the VDU is enabled
the whole sc.een is selected as lhe window area

and opaque mode is selected.

The program St.eam is reselected aller a J or C command and in the Trace command

ll the scrsen Mode is not changed within the Monjtor, all ol your program screen
parameters should remain unchanged while using the Monitor.

1.9 Kcyboard
ll, on entry to the Monilor f.om a Breakpoint or from Basic, the Keyboard has been re'
defined such that Monitor command k€ys are not recognised, lhen it is possible to com-
pletely reset the keyboard from within the Monitor-

CTRL + @ will .esel the keyboard, but lhe old stalus ol the keyboard will be lost. This
will always work, as the '@' key is tested directly by the Monitor as a Key number and
not as the character retu.ned by that key-

The ENTEB key is set to rspeat (which is does nol normally do in basic) lo tacilitate the
M and S commands. lts repeat state on entry to the Monitor is r€slo.ed alter a J or C
command, and on exit to Basic or the Assemble..

1.10 THE ONITOR 11{ PRACTICE
L.nelh rnd locrllon ol A UON
To enable the mosl elfeclive use to be made ol the relocatable leature ol AMMON, a
memory map will help to explain memory usage:

(------------Totrl lordlng lmgti------------h
(-------lcturl l.ll|th--------]! t

fi0t
Codr

fulocrtr

stût âddr.rr Totrl lollllno harth . lfSl
rrturl lrogtft ' 'l9EE

26.

When AMMON is loaded, a shon Easic program is ftrsl loaded which is used to get the
Start Address and aller HIMEM lo (Start Address. 1). The Machine Code is then loaded
into memory at the Start Address and lhis code is lFBB Hex long (about 8K). The
relocale routine is at the higher memory addresses, and is overwritten with zeros once
it has b€en run. So having relocated, lhe actual length ol AMMON is only 19EE (almosl
6.5K).

There is no check made on the validily ot the Starl Address supplied, and the highest
values normally acceptable to the system, without overwriting memory reserved by lhe
Operating System, are:-

Without Discs, but with SYMBOL AFTEB 256 = 8040
with Dascs, and with SYMBOL AFIER 256 = 87a0

These values will be 80 Her (128) bytes lower it you do not execute a SYMBOL AFTEB
256 belore loading.

The simplest method of loading AMMON to the highest available location is lo press
ENTER in response to "Start Address?" when loading.

SrYlnO & Lordlng Cod.
ll you have used AMMON to write shorl Machine Code roulines or blocks ol data direct-
ly inlo memory wilhoul using lhe Assembler, and you wish to Save this code you should
return to Basic and use Basic commands to do this. You can specily lhe start location
and length in Hex or use AMMON's number converler lo get the Decimal equivalents.

Syd.m Slltu! throughoul A ON
AMMON has been wrillen to preserve as much as possible of the Crc464 machine
system status while you are using lhe Monitor lunclions.

On entry to AMMON, the sequence of events is:-
i) INT stalus is stored
ii) All register contents are sto.ed
iii) Stack Pointer is sel to AMMON Stack
iv) Current program screen Mod€ is slored
v) Repeat slate of ENTER key is stored: key is sel to repeat
vi) Screen is sel to AMMON delault Stream (usually Stream 7)
vii) Entry message is displayed

On exil lrom AMMON by way of J or C commands:-
i) Screen Stream is set to program Stream
ii) Screen Mode is resel to program Mode only il Mode has been

chaôged in AMMON
iiD ENTEF key.epeat stâlus is reset
iv) INT slatus is reset
v) Register contents are loaded wilh slored values
vi) Stack Poinler is reset to program Stack

On exil f rom AMMON to Êditor Assembler:-
i) Stack Pointer is sel to its defaull value in program Stack
ii) ENTER k€y.epeat stalus is resel
iii) BOM O is selecled as the current Upper FOM
iv) The lnterrupt Vector at 0038 is reset lo ils delault value
v) lnterrupts are enabled

27.

On exit from AMMON to Basic:-
i) ENTER key rep€at status is reset
ii) RoM O is selêcted as the cur.enl Upper RoM
iii) The lnte.rupt Vector at 0038 is reset to its default value
iv) lnlerrupts ars enabled
v) Stack Pointer is rgset to its delaull valu€ in program Stack

8ln9l. Sl.pDllle ROI Roollm.
lf you use the Traca command to Singl€ Slsp through ROM routines, parlicularly thos6
in the Lo$re. ROM,

'pu
rnay lind that your computer creashes and will not accept any lur-

ther keyboard input. The Lower ROM routines mosl likely to cause this effect are those
concerned with prlnling text lo the screen. AMMON uses thess routines lo cr€ate lhe
Trace display, aM the Lower ROM roulines €xpect to find the data they use for that
display intact. By Single Slepping the ROM routines. you will change lhat data, and thus
cause ihe CPC/iô4 ope,ating system to lock up.

lf you escape lrom the Trace command while Single Stepping a Lower Rom routine, you
will probably leavô the Lowa, ROM enabl€d. Any address b€twe€n 0000 and 3FFF will
then b€ interp,eted by tho Main Monilor commands as a ROM location, not BAM. This
may become evident il }!u then use the Monitor lo inspect the Assembler's Object 8ul-
fsr, which normally li\r€s bslorr 3FFF. ln this case, it would app€ar ihat lhe Assembler
has not assernbl€d your program. ln reality you would b€ looking 8t ROM, nol RAM loca'
tions, and rcu ulould n€€d to disable the Lower ROM as dascribed in Section 1.5.20.

1,11 Summary ol Commrnd!

It llll nn Iamory locrllon & conients in Hex
aaaa = addrgss
nn = nêw coôlents
ENTER for next location
M reent6rs command

Ercapa to Prompt & cursor

Lnory locallon & contents in Ascll
aaaa = addrgss
lener = character lrom keyboard
ENTER for next location
3 re€nters command

1..ll bùbô m lna..l
aaaa = address lst byte insôrtion
bbbb = address highesl byte to be mov€d
nn = number byles to lnsert

D !r!r bbbô nn D.Lt!
aaaa = address lst byte deletion
bbbb = address highesl byle to be moved
nn = number bytes to Delele

A mlr bbôb cccc Artr ovr
aaaa = present starl address
bbbb = present end address
cccc = nêw slarl address

ESC

t arar latlar

28.

F..r. bbbb nn Fnl
aaaa = stan address of area to Fill
bbbb = end addrsss of area to Fill
nn = value to be lgaded into area

P.r.! bbbbrENTER Prlnl Hrrcrrphlc8 Dump
aaaa = address ol first byte
bbbb = address of last byte (optional) or ENTER for open

ended screen display
Printer options on Hex display if end address given

Z lr'l bbbbrENTER Dl.rlrcmblll
aaa? = starl address
bbbb = end address (optional) or ENTER for open ended

screen display
Printer oplions if end address given.

N HrD numbar Numbar Convorlrl
H/D = Hex or Dec number
number = value lo be converted

E Edllor Aræmblrl
Access lo AMMAS if residenl in memory

B !r!r Brarkpolnl
aaaa = address of Breakpoint

J !!!! Jump I Eracula
aaaa = address to Jump lo

K Brllkpolnl Rrslora
Flestores last Breakpoint - executes aulomatically, giving
address

R R.9l!i.1 Dllplry
c Bro.kpolnl Conlhua

Continues program execulion aller a Breakpoint

T rlTE TER Trrcr
aaaa = address lrom which Trace slarts or ENTER to slarl

Trace trom rc value in Begister display.

S !!!r bbbbrÊ ÎER Hcx or ASCII Sc.rch
aaaa = starl address
bbbb = end address (oplional) or ENTÊR lor delault end

- address ol FFFF.

L 0rl Lowor ROi,l lccsss
Currenl enable slale given.0/1 lo disable/enable ROM

U o1 upp€r ROM acco3s
Currenl enable slale 9iven. 0/1 to disable/enable ROM

CTRL U nn Upprr ROM srl.cl
Current seiecl numbea given
nn = new ROM number in Hex.
ROM nn is selecled & enabled

Y Rrlum lo 8!rlc

* n Screen Stream
Current AMMON St.eam given
n = new Stream fo. AMMON lo use (n is a single

dgclmal number)

CTRL I Scr..n Iod. I
CTRL 2 Sc...n od. 2

CTRL @ X.ttotrd lt|.l

30.

sEcTloN 2

Tho EDITOR ASSEMBLER .AMMAS" VETsION 1.I

2.1 Generâl Dsscrlptlon
The ASSEMBLER allows you lo write your Machine Code program as a series ol inslruc-
tions (mnemonics) into a listing wilh line numbers in a similar fashion lo a Basic lisling.
The ASSEMBLER is completely sell.contained, and operates in MODE 1 or MODE 2,
wilh a screen display that is automatically tabulaled into lields to make your program
listing very easy to read. Entering your Machine Code listing is a quick and simple pro-

cess since the ASSEMBLER S Line Editor conlains lacililies lo provide Automatic Line
Numbering; to Renumber the listing; to Edil and aller any line; and lo inserl lines or
delete unwanted lines A lull.screen Copy Cu.sor is available operating in a similar
lashion lo Basic.

The ASSEMBLER accepts all the 280 mnemonics (plus a number that are nol published)
and will accept both Decimal and Hex numbers, and an unlimited number ol Labels,
each containing up lo 6 characters.

To simplify programming, a number of Assembler Directives have been included lo allow
you to define constants, variables, messages, and lo sel up dala lables. These are OBG,
ENO, EOU, DEFL, DÊFM, DEFS, DEFB and DEFW. The Directive PRNT allows sc.een or
printer output to be lurned ON or OFF during the Assembly process. Arilhmetic lunc'
lions allow the ASSEMBLER to periorrn addilion or sublraclion within operands, and any
combinalion ol Label names, numbers or single ASCII characlers is accepled. This
allows the ASSEMBLER to calculate the lengih ol a message or dala table, and lo ac-
cept negative numbers.

When assembling your Machine Code program, the assembled code is wrilten into
memory, and can be displayed on lhe printer, or on lhe screen wilh a PAUSE lacilily to
lreeze lhe assembly process while you study lhe assembled lisling on lhe screen. The
laslesl assembly mode is wilh no outpul to either printer or screen, and in this mode.
1K ol finished Machine Code is asser'lbled in approximalely 7 seconds. Full error clelec'
tion is included, and when an error is lound assembly slops wilh a sensrble error
message. The whole line containing lhe error is displayed on the screen, and you are
left in lhe EDIT mode, ready lo correcl lhe error and re-enler lhe line into the listing.

The ASSEMBLER conlains roulrnes lo LIST lo a prinler and to SAVE, LOAD and VERTFY

lhe program listing or the resulling Machine Code lo Disc or Tape. The ASSEMBLEB
aulomatically calculales the slarl address and iength ot any SAVED inlormation, and lhe
assembled code w'll LOAD back vra Basrc

To allow long programs to be assembled, lhe Source Code can be stored on lape or
disc in up to 26 linked sections. Each seclion is loaded into memory in lurn during the
assembly process, and lhe resulting Machine Code can eilher be slored in memory, or
lor very lengthy programs, can be sent directly back to lape or disc. this would allow
you to assembre up to 64K ol code if you so required, and with discs attached, lhe
whole process is automalrc Using tape. detailed screen prompls guide you through the
assembly paocess.

31.

All commands are available from lhe keyboard as single keystrokes, and Save/Load lile
names can be defined to be available lrom a single keystroke. Ïo simplily access from
Basic, the Assembler is set up as an RSX (i.s. it is accessible as an Exlernal Command),
and it lully supports External Commands to allow the use ol Disc commands elc.
without lhe need lo return lo Basic.

2.2 Loadlng AMMAS
As the Assembler operates as an RSX, it is advisable to load it inlo a clean machine, so
clear the CPC464 by CTRL + SHIFT + ESC. lf you have Discs atlached, then enter ihe
direct command I TAPE.IN (ENTER) and type RUN" (ENTER) to load the Assembler lrom
casselle. AMMAS gives you the oplion of making a Back.up copy onlo Disc or Cassette,
and if you have Discs altached, you should enter the direct command ITAPE.OUT il you
require a cassetle back.up. You should also sel the casselie write speed lrom Basic
belore Loading lhe program.

A short Basic program loads the code ol lhe Assembler and offers the oplion ol making
a back.up copy onto disc (or cassette).

1o allow lor memory 'grabbed' lrom the memory pool by discs or olher ROM or RSX
sollware. lhe Assembler is relocatable, and automatically relocates itsell to below the
current HIMEM.

This creates a very simple method oi running the Monilor and Assembler togelher by
loading the Monitor fi.st and locating it lo the highest available memory (press ENTER in
response lo 'Slart Address'), and lhen loading the Assembler. lt will then locale ilsell
below lhe Monitor. You can reserye memory above lhe Assembler lor your own pur.
poses by lowering HIMEM belore loading the Assembler. Remember thal neither the
Monitor or the Assembler do a SYMBOL AFTER 256 in their Basic loader programs, so il
you do change HIMEM belore loading eilher program, AND you wish io use lurther
delinable graphics, then do a SYMBOL AFTÊR 256 from Basic BEFORE loading.

To load a back-up copy lrom disc, type RUN "ASS", The Assembler is Called and the
usual entry message displayed.

WARNING

THIS PROGRAM IS COPYBIGHT AND ONE COPY ONLY
mây be mâd€ tor your OWN PERSONAL USÊ.

It is ill€gâl to s€ll copios or to give copi6 ro tri.nds.

2.3 Acco88 to AiIMAS
On loading, the Basic program sels HIMEM lo a veiy low value whrch is passed to the
Assembler as the start ot lhe Obiect Buller. The Assembler is totally sell-conlained and
not dependant on any Basic, and is compatible wjth any Basic program that you wish to
load at lhe same lime. lf you alter HIMEM lrom Basic after loading lhe Assembler, you
musl pass the new HIMEM value to the Assembler nexl time you access it. The normal
means ol accessing the Assembler is by I ASS but if you have changed HIMEM. then
use lASS,Hlt Elll + l. The value ol the slart ol lhe Object Buffe. will be sel to
HIMEM + 1, but lhe amount ol memory available lo lhe Assembler will be allered.

To make lhe most e{lective use of AMMAS, you should allow il to access as much

memory as possible. You should make sure thal HIMEM is set as high as possible
betore Loading AMMAS which allows it lo load as high as possible io memoty. ll you
need to use Basic while AMMAS is in memory. make sure that HIMEM is set as low as
possible. AMMAS will then use lhe area belween these two HIMEM values.

On accessing AMMAS, you will be greeted by the lollowing message:-

EOITOR ASSElIIBLER
am As 1.1
O Plclurulqur

EIV Trrl or CONTINUE wllh t.xt (NrC)

ll you have no Source Code in lhe Assembler, press N which will ensure lhat all the
Assembler's buffers are reset. Any Source Code in memory will be lost in this case.

lf you already have Source code loaded into the Assembler, pressing C will change
nothing in AMMAS and allow you to carry on with your machine code programming.

2.4 THE EDITOR
AMMAS works in two distinctly separale parts. The EDITOn is used lo enler and edit
your Source Code lislings and ollers a number ol lunclions to simplily this process, lor
example Aulo line numbering, line re-numbering, and block copy and delete tunctions. lt
is a Line Edilor thal always uses the bottom line ol the screen to accept keyboard en-
lries, with screen scrolling when necessary. There is a Copy Cursor facility operating in
a similar way to Basic's Copy Cursor.

Having typed a Source Code listing inlo AMMAS, it can be saved to Casselte or Disc lor
luture use. But belore a program represented by that $urce C.ode listing can be run, il
must be converted into machine code by the ASSEMBLER. When you Load AMMAS into
your Crc464, both the EDITOR and lhe Assembler are loaded as one program, and the
EDITOR is aulomalically entered. The EDITOR controls the operation of ihe whole o,
AMMAS, and conlains commands lo invoke the ASSEMBLER and lhe
Cassetle/Disc/Printer lacililies.

When you are enlering or editing a Source Code lis!ing, the Editor normally produces
capital letters at all tim€s, and will only allow lower case letlers to be displayed between
quolation marks, when the SH|FI and CAPS LOCK keys operate in the normal way.

You can move lhe cursor through the Edit line at lhe bottom of the scr€en using the lelt
and right cursor control keys. The DELETE key deletes the character to the lelt ol the
cursor, and moves the cursor one character to the lelt. To move the cursor quickly lo
the left hand end of lhe edit line, press CTRL and the lelt cursor key togelher.

2.4.1 AM TAS COIMANDS
All commands can be typed in character by character, but lo simplify access to the
commands, lhey are all available by holding the CTBL key down while pressing one
other key as lollows:-

Comm!nd
ASSEMBLE
AUTO
BASIC
CLEAR
COPY
DELETE
EDIT
FILE
LIST
LOAD
LABEL
MONITOR
MODE 1

MODE 2
NEW
RENUM
SAVE
VERIFY

CTRL + K.y

+
B
X
c
D
E
F
\
L
K
M
'1

2
N
R
s

Wherever possible, lhe initial letter ol lhe command nâme is used to access that com-
mand, but where this is nol æssible (e.9. LiST, LABEL, LOAD) other keys have had lo
be used.

Pressing CTRL plus one of the command keys shown above will always print the com-
mand name on the screen at the currenl cursor localion, bul lor the command to be
recognised, it musl be the lirst word on the Edit line. ln other words it must be at ihe
letl hand end ol the boltom screen line. ll you are unsu.e thal the cursor is in the cor-
rect place, press ESC belore accessing the command name. There musl be a space
alter lhe command name and belore any operands. Using CTBL plus a key puts the
space there automalically-

2.4.2 Scroon DlBplay
The Screen display is always tabulated into lields to make your listings easy lo follow,
and the SPACE bar acls as a TAB function when you are entering lines ol Source Code.
The cursor conirol keys automatically detect the boundaries ol the lields wjthin the Edit
line. You can use Mode 1 or Mode 2 (see sections 2.4.12 and 2.4.131with any choice of
Paper and Pen colours.

2.4.3 Enlerlng â llne ot Sourcô Code
The machine code program thal you wish to write is enlered into a listing in a similar
lashion to a Basic listing. Only on! instruclion per line is allowed, and the line must con-
tain a line number belween 0 and 9999, and the operation name along with the relevant
operand(s). A lull lisl of 280 mnemonics in the correct torm for the ASSEMBLER is
shown in Section 4. The program line may also contain a LABEL name that will identify
that inst.uction in the program. The screen display is divided inlo 4 tields as shown
below. starting al the lelt hand end ol lhe line:-

Line number
Label name
Operaiion name
Operands

- 1st 4 characters plus 'l space

- Nexl 6 characte.s plus 1 space

- Next 4 characlers plus 1 space

- Bemainder of Iine

t0t5 tASEt u)
l0:0 tI)

34.

HL, JFFFII

DE, J?768

Use the "-" and "-" cu.sor conlrols to move the cursor along the bottom line. With
an emply line, the cursor will iump to lhe beginning ol each field. Use the "-" cursor
conlrol to ensure thal the cursor is at the lelt hand end of the line and iype in a line
number, say 10.

As you type each character, it is displayed, and lhe cursor moves 1 location to ihe right.
Having entered the number. lype SPACE. The cursor will move lo the slart ol the nexl
tield, th6 LABEL tield. The SPACE key has several different lunctions depending upon
the curaor position in the line, and these will be explained later. lts main lunction when
entering a line is to advance lhe cursor to the start of the next lield, clearing any
characters it passes. The cursor is now at lhe start ot the Label Field. Most of the lines
you will enter will not require a Label, so type SPACÊ again, and lhe cursor will move lo
the slall of the Operation Field.

Pressing spaca a ihird time has no ellecl, as every line you enler musl have an opera.
tion name, and lhe cursor waits for a name to be entered.

All programs you write mud start with a delinition ol the address trom which the pro-
gram is to be assembled. This is called the ORlGlN, and is abbreviated lo ORG. Type in
ORG as lh€ operation. Typ€ SPACE, and the cursor will now move to lhe start ol the
Operand Field. The ORG operation now requires the address that will be the address of
the lirst byte ol the asssmbled program. For this example, enter 6000H. This .epresenls
the Hex address 6000 (= 24576 decimal). For more intormalion on ORG, see section
2.7.1, and lor more about numbers. see seclion 2.6.2.

The botlom line of lhe scr€en should now be:-

ûo I (.) URG 6Cx:){)H

Belore entering this line into lhe lisling, use the " i" and " e " controls lo move lhe cur.
sor around the line. When the cursor is over a character, pressing an alpha.numeric key
will rsplace lhe original character with the one typed in, and move the cursor I location
right. The " -" and " - " conlrols move lhe cursor to the next character left or right,
within a lield, ignoring any spaces. lf a lield is empty, the cursor moves lo the ap-
propriale end of thal lield.

To DELETE a character, move the cursor to the character to the right ol the one to be
deleted and press DEL. The cha.acter lo lhe left ol the cursor is deleted and the cursor
moves into the deleted locâiion. The rest of the line is nol moved.

Now press ESC The message '8REÂK' is displayed and the cursor moves to the lell
hand end ol lhe bottom line ol the screen, which will have sc.olled up. Pressing ESC will
aborl the current Editor function (and cancel Auto line numbering) al any time. Press
Space again and nothing happens, as the cursor is waiting for a line number or a com-
mand name.

Re-iype the whole ORIGIN line again, and experimenl wilh the cursor control keys, the
SPACE and DELETE keys until you are familiar wilh the operation ol these tunctions.
When you are ready re.lype the ORIGIN line again. and lhis lime press ENTEB.

ïhe screen will scroll, and the cursor will appear at lhe lett end of lhe bottom line. The
line has b€en €ntered into the listing. At the time ol enle.ing a line into the listing,
checks are carried out on the contents of lhe line to ensure that each tield ends with al
least one space. The spaces are essential for the ASSÊMBLER lo recognis6 the various

35.

parts ol lhe line. ll they do not appear in the line when you press ENTER, lhe line is nol
entered, and lhe cursor appears over lhe unwanted cha.gcter.

Section 4 shows a complete list ol mnemonics in lhe form lhat the Assembler will
recognise, and it is important that you enler lhem in lhis torm. They all conlorm lo the
standard 280 instruction set.

Using the four lields into which the screen is divided, always enter a line number: enter
a label name (maximum 6 characters) or leave the label lield blank: enter ihe operation
name (LD CALL RET etc.) into the operation field; ancl enler any operands into th€ last
field- where an operation has two ope.ands, they mutl be separated by a comma e.g.

i:)r):{) Ln 'q, i!{iH

2.4.4 L|ST
Move the cursor to the leti hand end ot the line and oress CTRL and lhe\ keys
logelher. (The keys are one above the other.)The word LIST will appear on lhe screen.
Pressing ENTER will produce a lisling in numeric line order slarting with the lowest line
number in the listing. Ten lines of program are displayed whereupon lhe lisling will lem-
porarily stop. Subsequent blocks of ten lines of listing are displayed by p.essing SPACÉ,
unlil the end of lhe program is reached- Alter each block ol ten lines, any olher com-
mand may be used belore continuing wilh lhe listing.

You can specily a line number after LlSl, and the listing will stari lrom that line number,
or the next line. if that line number does nol exist.

For example LIST 5lX, wall list lrom line 500 onwards, whereas in Basic it would only list
that one line. ll you are used lo the Basic lorm of LISï 500- to list on lrom line 500, then
that form is also accaptable to AMMAS.

You may w€ll have RENUMbered your Source Code listing in the process ol enlering it,
and be unsure ol the cufient line number of a parlicular part ot lhe listing. ll this is the
case, and you know a label name close to lhe area you wish to list, you can use the List
command to lisl lrom thal label name with

LIST XXXX where XrûX is the label name.

the Editor wjll search lor the definition of thal label name in the label tield ol your
Source C,ode, and list lrom the line containing the label definition. lf lhe label specified
in the LIST command does not exisl in your Source Code, no listing is produced.

ll you hav€ a printer connected lo your CPC464, you can produce a printout ol your
lisling by lyping a / after the LIST command name and belore any line number or Label
name. For example

will list to the printer lrom line 500 to the €nd of the listing.
You can pause the printer listing by pressing ESC once, afler
which, p.€ss SPACE to continue or press ESC sgain to teÊ
minato lh6 p.inter listing.

LlsT ,500

36.

2.a.5 ED|T
Move lh€ curso. to the left hand end of the line and press CTRL and the E key together.
EDIT is displayed on the screen. Pressing ÊNTER now will display the lirst line ol lhe
listing at ihe boflom of the screen. To EDIT a specific line, enter the line number afler
the EDIT command and press ENTER. You can now use the cursor control keys to edit
the line and re-enter it into the listing by pressing ENTER.

To delete a line lrom the lisling, lype in the line number only and press ENTER.

2.'1.ô AUTO
Move lhe cursor to the left hand end ol lhe line and press CIRL and the key wilh +
engraved on it. AUTO will be displayed on the bottom screen line. When enabled, lhis
command aulomatically gives you a new line number each time you enler a line into the
listing.

The command lorm is:-
AUTO x, y
where AUTO is accessed irom CTRL +

x = the slarting line number
y = the slep value (belween 1 and 99)

x and y must be separated by a comma.

For example, AUTO 1000,5 will slarl numbering at line 1000 in steps of 5.
and AUTO 10 will start producing line numbers from line l0 with the

previously delined step value. It you havÊ not yet delined a
slep value, the delault value is 5.

ll AUTO line numbering is about lo produce a new line number in excess of 9999, lhe
AUTO lacility is aboried to avoid overwriting the starl of your lisling.

When a new line number has been displayed on lh€ screen, the cursor is positioned al
lhe start of the Label lield. ll you do not wish to enter a label name, press SPACÊ once
to move ihe cursor to the start ol the operation lield.

1o stop the AUTO lacility, press ESC once. Re.entering AUTO again without specifying
any values will use lhe lasl step value with a line number following lhe lasl one produc.
ed by AUTO.

2.'I.7 RENUM
Move the cursor to the lelt hand €nd ot the Edlt line and press CTRL and the R key
log€ther. RENUM will be displayed on the bollom screen line.

This allows th€ Source Code line numbers to be renumbered.
The command torm is:-

RE U r,y,r
where RENUM is accessed from CTRL R

x = the step value
y = the line number trom which io slarl renumbering
z = lhe new value to be given to line y (the routine actually gives a n€w

value ot z + x to line y)

37.

Ey\AMPLE a). RENUM 2.1000,2000 will give a step value of 2, and renumber from the
existing line 1000,9iving that line a new number of 2002. Subsequent line numbers,
through to the end of lhe listing, will be renumbered in steps of 2.

EXAMPLE b). RENUM 2,1000 will .enumber lrom line 1000 to the end of the listing in
sleps ol 2.

DGMPLE c). BENUM 2 will renumber the whole listing in sleps of 2.

ln all cases, if the RENUM parameters would create a line number grealer than 9999,
lhe step value is reduced by 1 and the renumber is executed again automaiically. ln Ex-

ample b). if the step value has reached 1 and a line number greater than 9999 would be
produced, the whole listing is renumbered in steps ol 1. ll, in Example a). lhe step value
reaches 1 and a line number greater then 9999 would be produced, the value ol z is
reduced and the renumber is allempled again with a slep value of 1 until it is suc-
cessful.

ln all cases, renumbering is ellective f.om the chosen line in lhe listing lhrough to the
end ol the listing.

2.4.8 DELETE
Move the cursor to lhe lelt hand end of lhe Edil line and press CTRL and the D key
together. DELETE will be displayed on the screen. This command allows a block of lines
to be deleled lrom your Source Code lisling.
The command lorm is

DELETE x, y
where DELETE is êccessed from CTBL + D

x = line number o, start ol block
y = line number of end of block.

Press ENTER, and the block of lines lrom x to y INCLUSIVE will be deleted.

2.4.9 COPY
Move the cursor to the lell hand end of the Edil line and press CïRL and the C key
together. COPY will be displayed on the screen- This command will copy a block of
Source Code inlo another pa(ol your lisling. The original block of lisling is not deleted.

The command lorm is

COPY x, y, z
where COPY is accessed lrom CTBL +C

x is lhe first line number of lhe block to copy
y is the last line number ol the block ot copy
z is the new poinl in the lisling lo copy to

ll Z is belween X and Y then a Synlax Eûor is generated.
lf X>= Y lhen a Syntax Error is generated.
lf a line Y exists, thal line is included in the Copy.
lf a line Z exists, then the block is inserted AFTEÊ it.
ll a line Z does not exist, then the block is copied lo where line Z would be.

The lisling is nol re-numbered, and you will have duplicate line numbers.

38.

2./t.10 NEW
This command clears the Text Buffer ol all Source Code. clears the LabelTable. and
resets th€ Assembler to the same state it was in when you first loaded it.

With the cursor al the lefl hand end of the bottom line, press CTRL and the N key. The
messaga lhat you saw when you firsl loaded the Assembler will appear. il you typed
NEW by mistake you can now press C and nothing will be losi. ll you want lo erase the
entire program listing, press N.

2.4.11 CLEAR
This command is used to Clear specific parts of the Assembler's buflers and tables.

Move the cursor lo lhe left hand end of lhe Edit line and press CTRL and the X key
together. CLEAR will be displayed on the bottom line. You must now specily one ol four
single paramelers to indicale which parl of memory is lo be cleared.

The command lorms are:-

CLEAN L

CLEAR O

CLEAR T

This clears all the labels lrom the label lable, and resets the label
table to lhe * label only.

This clears the Object Buffer to zero length. (use the lelter O. not
lhe numb€r zero)

This clears the T€xt Bulfer of your current Source Code, and
enables a protection system on the labels currently in ihe label
table. This is useful where you need to assemble two separate sec-
tions of Source Code, with the s€cond section having access to the
labels created by the lirst section. The ASSEMBLE command will
clear the lab€l table back to its protected size (normally just the#
label) before it starts to assemble code.
The protection can be cleared by the lollowing commands:-
CLEAR P; CLEAR L: NEW

This clears the protection applied by CLEAB T to the label table. All
the labels remain in lhe label tabl€, but without prolection.

CLEAR P

2.4.12 MODE I
Move the cursor to lhe lelt hand end ol the boltom screen line and press CTRL and 1

together. MODE 1 is displayed on the screen. This command (and MODE 2 below)
change the screen display mode.

lf rsqujred, two operands may be appended to this command to deline lhe INK colours
used by PEN and PAPER. The Assembler always uses PEN 1 : PAPER 0 and the colours
associated with INK 1 and INK 0 are set lo the values given. the lirst operand is the
PEN ink and the second operand is the PAPER ink. The two must be sepa.ated by a
comma. The given values are masked lo be within the range ol0 to 26, and the Border
colour is set the same as lhe Paper colour.

qives white ink, black paper.

39.

e.g. uoDE I 26,0

2.4.13 MODE 2
This command lorm is identical to MODE 1 above, but sets Screen Mode 2. PEN and
PAPER inks can be specified ii required.

2.4.14 BASTC
This command allows you to relurn to BASIC lrom AMMAS. Move lhe cursor to the lett
hand end ol the Edit line and press CTRL and the B key together. BASIC will be
displayed at the bottom ol the screen. Press ENTER and you will return to Basic, with
the usual "Ready" message.

1o re.enter the Êdilor Assembler see seclion 2.3.

ïhe Basic Loader program for AMMAS will probably still be in memory, but as AMMAS
is completely self-contained, you can salely use the Basic command NEW to remove it.
You can also use your own Basic programs lvhile AMMAS is in memory, but remember
ihat il you alter the value of HIMEM you musl tell AMMAS its new value when you re.
access the Assembler. You should use the External command I ASS,Hlt Et + l.

ll you need lo Load or Save while in Basic, you will have to raise HIMEM to give Basic
enough room for its Ïape/Disc buffer. AMMAS sets HIMEM lo a very low value, and
Basic will give a "Memory Full" error il you do lry lo use Tape/Oisc commands without
altering HIMEM.

2.'I.I5 EXTERNAL CO MANDS
When additional ROM or BSX software is in your CPC464, you can access lhis soflware
through External commands with lhe torm I NAME where NAME is the command name
(e.9. I MON gives access to AMMON). the Edilor Assembler also contains lacilities lor
accessing Exlernal commands wilhout the need io return lo Basic to do so.

Move the cursor to the left hand end ol lhe Edit line, and type SHIFT + @ to give lhe
BAB symbol lollowed immediately by the external command name. A maximum of 5
numeric or string operands can also be specified. Decimal or Hex numbers are
accepted, but Hex numbers must be in lhe AMMAS format (i.e. 4000H : see section
2.6.2',).

ll you add operands to the Etternal command, lollow the command name with a
comma. String operands are typed out in lull. and not accessed via a variable as tn
basic.

e.g. IERA,FILEI{A E.BIN to erase a file lrom Disc
I RÊN,FlLE2.BlN,FlLEl.BlN to rename a Disc tile.

ll a string operand starts with a number character, you should enclos€ the whole string
operand within quotes to avoid any confusion over the operand beang treatsd as a
number by AMMAS. The quotes will not be counted aS part ol the slring.

e.g. I REN, 'FlLE2.BlN","FlLÊl.BlN" has lhe same etlect as the above
example.

40.

2.4.1ô COPY CURSOR
When entering a listing, o. during Ediling. a full screen frpy Cursor is available exactly
as in Basic, using SHlFl wilh the arrow keys to move the Copy Cursor, and COPY lo
transter the r€levant characler into the Edit line.

When a Space is copi€d into the Edil line al the bottom of lhe screen, the Main Cursor
in the Edit line does not Tab across to lhe nexl field, but simply writes a single Space
into th€ Edit line. Because ol lhis, you could find that a line of Source Code is rejectsd
by the Editor because it does not conlorm to the expecled field tormal.

As the Edilo. ol AMMAS always oærates in an "overwile" mode as opposed to an
"insert" mode, the Copy Cursor offers a simple way ol inserting characters into a line ol
listing, for example inlo a message line. List the Source Code so lhat the line requirhg
an insertion is on the screen. Use the COPY CURSOR to copy lrom lhe line number up
to the inserlion point into the Edit Line and lhen type in the insertion lrom the keyboard-
Finally, use lhe COPY CURSOB to copy lhe remainder ot the line lrom the screen lisling
and ENTER lhe n€w line into the listing.

2.4.17 Commcnl llncr
Comments can b€ inse.ted into your lisling, in a similar way to a REM line in Basic.

Enter the Line Number: move lhe cursor lo lhe start ol lhe Label Field and enter a semi'
colon.

Using the "-" cursor control, move the cursor lo lhe slart ot the oparand lield and
enter your comment, enclosed in quotes, exactly as you would enter a message line.

{See DEFM). the semi-colon identilies the line as a comment, and lhe Assembly routane
ignores the whole line.

2.l.lE ESC Kcy
ïhe ESC key can be used at any tjme to cancel or stop most functions; (e.9. during
assembly, lisling, display ol label table, disc/cassette commands or to cancel unwanted
commands before execution). Using the ESC key while typing in a cornmand or a line ot
Source Code will cause a BREAK slraight away, but il a command is running wh€n ESC
is pressed, that command lreezes and lhe cursor appears at lhe botlom ol tho screen.
Pressing SPACE allows lhe command to continue and a second press on ESC will cause
a BREAK.

2,{.19 R.r.tilng thc loybolrd
lf you return to Basic, the command name expansion slrings will slill operate, and will
be available on re'entry to the Assembler. ll, however, you have changed any ol the
main keyboard definitions in Basic, you can reset lhe Assembler keyboard by CTRL +
@. This will re-deline all the key expansion strings, and will set the FILE name (see
section 2.5.1) to a null string.

2.4.2{, MONIïOR rccelr
lf you loaded lhe MONITOR (AMMON) program as well as lhe Assembler, you can
direclly access the Monitor in one ol lwo ways. (See Section 3 lor loading bolh
p.ograms togelher).

41.

Firstly, as lhe Monitor is set up as an RSX, you can use the external commandlMON
and press ENTER.

Secondly, il you press CIRL and lh€ M k€y together, you will see MONITOR appear on
lhe bottom screen line. Press ENTER to Sain access lo AMMON.

2.5. CASSETTE ANO D|SC CO AT{DS
It is possible to Save thè conlents ot both the Source Code bulfer (your program listing)
and the Object Code bulfer (your assembled program) directly lrom the Assembler.
there is no n€€d to specify a stan address or lsngth as lhe Assembler calculales lhis
aulomatically.

On loading, the Ass€mbler checks to see it DISCS are present, and all casselte based
routines will work with the Discs it they are available.

lf you wish to use cassettes while the Disc intertace is connected to your CPC464, you
should use the External commandsl TAPÊ.1N.ITAPE.OUT orl TAPE to re-inslale the .equired
cassette lacilities. Those external commands mainiain their ellect until countered by the
relevanl I DISC external commands. Full details oi these exlernal commands are given
in Amsolt's Disc User lnslructions. A 2K bulfe. for Casselte/Disc commands is reserved
within AMMAS.

N.B.
It is possible to Load and Save a Source Code lile lrom Basic, but if you do, you will
either corrupt the Assembler, or th€ Assembler will not recognise the Source Code.

CASSETTE SYNTAX
The syntax ot lhe cassette commands is very similar to Basic cassette commands. You
can LOAD, SAVE and VERIFY Source code or Object code by specifying a lile name of
up lo 16 characters long, and the lile name must be enclosed in quolation marks (SHIFT
+ 2). To change the speed al which the Save is executed, you musl return to Basic
(see Section 2.4.14) and use SPEED WRITE 0 or SPEED WRITE 1 from Basic. You can
then re-access AMMAS and all lurther Saves will operate at the Speed you have
selected.

DISC SYNTAX
When using Discs, lhe file name specilied can conlain oplional User, Drive and Type
parts along wilh the compulsory Name ol up to I characters, and lhe syntax is the
same as in Basic. The whole file name, including any optional parts, must be enclosed
in quotation marks (SHIFT + 2).

When Saving or Loading with Discs. the Type palt of the tile name will default lo ".æE"
lor Source code, or ".BlN" (Binary) or ".COM" (CP/M) lor Object code. However, if you
specity a dillerent Type part, then that wjll be used in place of the delautt characters.
All Saves are defin€d in lheir header as Unproiected Binary files, excepl lor " COM '

files which are unprolected ASCll.

2.5.1 FtLE
You can detine a file name lor use in Casselte/Disc commands thal will then be

42.

available from a single key.

Move the cursor to the lelt hand end ol the line, and press CTRL and the F key
togelher. FILE will be displayed on the bottom line of the screen. Type in the lile name,
including the opening and closing quotation marks, and press ENTER. The lile name will
be checked for synlax, as il it were a casse e command with a maximum ol t6
characters. Spaces are ignored. lf you are using Discs. lhen a tull Disc synlax check js
carlied out by lhe LOAD/SAVE/VERIFY commands. Atso, if you are using Discs, a Type
part is not added by the file command, bul is added by lhe LOAD/SAVE/VERFIY
commands. ll you wish, you can specify a lype part within the FILE name you define.

To access the delined FILE name, hold down CTRL and Press the 4 key (it has $
engraved on it) and the file name, complete with quolation marks is printed on the
screen. FOr example, to Save a file with the delaull FILE name, use CTRL + S tor SAVE
and CTRL + 4 tor the file name.

2.5.2 SAVE
With the cursor at the left hand end ol lhe Edit line, press CTRL and the S key together.
SAVE will be displayed on th€ screen.
Type in a lile name (or use CTRL + 4 il you have delined a F|LE name) and make sure
that the fil€ name ends with quotation marks (SH|FT + 2).

You must now specily whether you want to Save Source code or Object code. To Save
Source Code that you have entered, lollow the tile name with T (tor T€xl) and to Save
your assembled Objecl Code, lollow the tile name with either B (lor BTNARY Code) or
with C (for CP/M æM files).
Then press ENTEB.

SAVE "namc"T Saves Source Code.
SAVE "nrma"E Saves Object Code as Binary Code.
SAVE "n!mr"C Saves Object Code as CP/M ".COM" tite. (Disc onty)

ll you are using cassette routines, you wilt see the usuat casselte messages.

lf you are using Discs, you will see some new messages. It you Save a file to Disc from
8asic, and a tile of the same name is already on the Disc, it is automatically made into
a Back-up version, with ihe Type pan ".BAK". However, the Assembler gives you the
option of making a back-up, or of over-writing the old file, or ot abandoning the Save lo
choose a new file name.

So, when Saving to Disc, the Assembler searches the Disc Direclory to see if a file of
the name specilied already exists. and the lirst new message you see tells you that a
Search is being made. lf a file of the same name does exisl, a message wili te you so.
and will ask yOU:-

OY.r te:Brckup: Ab.ndon (Or8rA)

You musl respond with SHIFT plus the lelter O or 8 or A. The SHTFT has been added
lo make your keypress a definite and consious choice. Ihis shoutd help to etiminale
overwriting files by mislake. Having made your choice. the Save will go ahead.

ll ihe lile name specified in your SAVE command does nol exist on the Disc, you will be
lold so, and the Save will 90 ahead immedialely. Wilh Saves lo Disc, you do not need lo
sp€cify a Type part, as Source code is automatica y given '..SC€", and Objecl code is
given ".BlN" or ".COM".

OEJECT CODE
The Assômbler always storês lhe code it assembles in the Object Bulfer irrespective of
the ORG address supplied in the Source code. (A luller explanation is in section 2.6.1).
When you Save th6 Objecl code to Disc, the code is Saved from the Object buller
(p.obâbly not its final run location), but lhe Header information on the disc is made to
conlain the correcl information about the Origin location. This means that you can Load
that code back into memory lrom Disc with the Basic command.

LOAD "n!nl."

and it will Load to the location given as th€ OFG in your Sou.ce code.

However, if you Save Object code lo Cassetle, there appears lo be no way ot crealing a
laked header containing the OBG location. For this reason, you must load Cassstte
based Object code from Basic with

LOAD "n!ma",rddra!r where addr€ss = your ORG localion.

This will force Basic to Load il to lhs correct address, but you musl keep a notg ol lhe
ORG localion spscilied in your Source Code.

2.5.3 LOAD
The Assembl€r will ONLY load ! vrlld SOURCE CODE llla thal has been previously
Saved by lhe Assembler. Any other file will give you a "Wrong lile type' erro..

Wilh the cursor at ihe lefl hand end ol the EDIT line, press CTRL and the L key
logelher. LOAD will be displayed on the screen. Type in a lile name {or use CTRL + 4 il
you have already defined the FILE name). Press ENTER. and the lile will be loaded.
Loading lrom Cassette will produce the usual cassette messages, and loading lrom Disc
does not produce any messages.

The command lorm is

LOAO "nrm."

Eefore lhe new lile is loaded, the Assembler will clear any existing Source Code trom its
buffer, and clear ihe label table to a null table. ln other words. it will NEW the
Assembler.

lf you wish to retain lhe labels trom a previous Assembly so thal a new section ol
Source code can have access to those labels, you can srmulate the CLEAR l command
(see section 2.4.11) in a Load command by using lhe lorm

LOAD "nrm."C

This automatically does a CLEAR T belore loading lo protect the existing labels.

You can also APPEND a section ot Source Code onto lhe end ol the Source code
currently in memory. lf lhere are any labels currently in the label table, lhey will be
deleted, and the new Source code will be added lo the end ot any Source code atready
in the buffer. The command form is

LOAD "nrm."A

44

Having Appended a section of Source code, you should RENUMbeT the whole lisling to
allow editlng of the lull listing, and you should also ensure that there is only ONE ORG
and ONE END statement in the entire listing.

When loading from DISC, lhe Assemblsr will assume a Tyæ part in the file name of
".SCE" unless you have sæcitied a Typ€ part in the LOAD command.

When loading from CASSETTE, LOAD"" will load the nexl Source file on the tape.

2.5.4 VERTFY
This command doss not exist in Basic, but the Assembler allows you to Verify a Saved
file against memory. The Verify command knows from the file's header whether it is
Source Code or Obj€ct Code, and checks the appropriate bulter.

With the cursor al the l€fl hand end of lhe bottom screen line, press CTRL and the V
key together. VERIFY will be displayed on lhe screen. Now lype in a file name (or use
CTRL + 4 il you have defined a FILE name) and press ENTER.

The command form is

VÊnlFY "nrm."

It you are reading from cassette, the scre€n messages will imply a LOAD, but the
Assembler is only checking the inlormation loaded against the values held in memory.

It you are Veritying lrom Disc, and do not specily a Type part in the lile name, the Verily
command will always delault to ".SCE". Therelore, lo Verily an Object cod€ lile
(normally Saved as ".BlN")you must specily the ".BlN" in lhe fil€ name as lollows

VERIFY "nrmr.BlN"

2.5.5 Erlrmll DISC commlndr
Exlernal commands have already b€en dealt with in d€tail in section 2.4.15. ll you need
to REName or EFAse a Disc file, or call up a DlRectory, you can do this from the
Assembler without lhe need to go back to Basic.

However, if you need to CAT a Disc, you will have to return to Basic (CRTL + B) to do
this.

2.6 Thc ASSEIIBLER
The ASSEMBLER converts the mnemonics €nlered in the listing inlo the Hex code lhat
the CPU can understand. The mnemonics in the lisling are called lhe Source Code and
the assembled Hex code is known as the Object Code.

the ASSEMBLER makes two passes through lhe listing. the lirsl pass checks for
correct synlax; calculates the values ol ths Labels and creales a table ol those values:
and crealês an outline Object File. The second pass calculates fully sll the numeric and
Label op€rands, and calculates the offsets of relative jumps. lt is nol possible lo
separale the two passes. The r€sults ol the second pass can be displayed eithêr to the
screen or to a Printer.

45

The Edito./Assembler resides al the top of memory and sets HIMEM to a very low value
as described in Seclion 2.3, and all its tables and bullers are allocated in the space
between HIMËM and the botiom of the Assembler. This allocalion ol table/buffer space
is transparent to lhe user, which simplifies programming, and a "Memory Full" error is
given if two areas are in danger ol overwriting each other.

As you ente. lines ol Source code into the Editor, lhe Surce code buller expands
downwards below AMMAS, and the label lable expands downwards below lhe Source
Code during the Assembly process. The Assembled code is stored in the Objecl Buller
which starts immediately above HIMEM and expands upwa.ds. towards the label table.

2.8,1 The Obl.ct Butlor
To allow you to Assemble code lhat could ultimately reside in any part ol memory, and
also lo give the Assembler lhe maximum amount ol working space at all times, the
Assembled code is ALWAYS stored in the Object Bufler. irrespective of the ORGIN
localion specilied in your Source code.

!-T---r'ilE0lï--------r----t-----.l----l--------'--- |

i itutci nrrtn) (iou?ca | | i $trm I

i i ! I (..i. t, Llms lrY.t!r! iii I) (cod. i lillts ilv3t.. i------------ i\ / I idttt i i

i ror i) (llblls i ! i ro. i

'
- i r (i i i ..------!--1-- ----ti| ((((((((((((((((i

Tinlblrd Sourc Côii
storrd in 0b jrlt Bufllr

Th€ Assembler will calculate all addresses during assembly based on the ORIGIN
address supplied in the Source codei the code is simply stored in lhe Objecl Buller,
ready for Saving when the Assembly process is compl€te. The Machine C,ode produced
by the Assembler is designed to run at the memory location given in the ORG command,
which is not normally the Objecl Buffer area. and lhe machine code would be loaded
back to the correct location using lhe Basic Load command. At thal stage, the Edilor
Assembler would not be required in memory, thus lreeing a large parl of the memory for
your own program.

When the Assembler is lirsl Loaded, HIMEM is set to a very low value, and this value is
passed to thg Assembler lor it to use as the sta(gf the Object Buffer. It you return to
Easic lrom the Assembler, and alter the value ol HIMEM (which you will need to do il
you want to Load a Basic f,rogram) thgn you must lell the Assembler the new value ol
HIMEM next time you acc€ss it. To do lhis, access the Assembler using,
I ASS,HIMEM + 1. lf you simply us6 | ASS, lhen the Assembler will carry on using the old
Obiect Bufler, which will probably collupt your Basic program.

46.

The Assembler will slo.e the new HIMEM address, and will automatically define a Label
with that value. This label is given a single character name of " * ". Êvery time you
Assemble a piece ol Sou.ce Code. you will always find this label al the end of the Lab€l
Table. For most of ihe time you will noi n€ed to use the * lab€|, but, il you load both
the Monitor and the Assembler together, you can use it as your Origin and save lime on
Saving and Loading while you test your Machine Code. See Section 3 tor mo.e d€tails.

2.0.2 Numb.rs
The ASSEMBLER will accept Decimal or Hex numbers, and will delault to Decimal.
Numbers nud start with a numeric digit, i.9. 0lo 9, and Hex numbers mull have a
sulllx H. It a Hex numb€r starls with a letl€r (A lo F) it must be preceeded by a zero, or
lh€ ASSEMBLER will treat it as a Label. i.e. 0000 Hex must be written 00000H, and FF
Hex as 0FFH.

Decimal numbers need no suffix. Decimal numbers between 0 and 65,535 are evaluated
to their corresponding Hex value. Decimal numbers grealer lhan 65,535, up to 99,999
are evaluated, but the carry produced is ignored. (i.e.65,536 is evalualed to 0000 Hex

and - 1 is evalualed lo FFFF Hex).

2,ô.3 ASCII Chrrrclcr3
Single ASCII characters are accepted as operands, providing that the character is
entered within normal quotes (Shilt and 2). This type ol operand is accepted by all
op€rations that can âccept a numeric opsrand, except the Assembler Directive OBG.

when you type the fksl quote, the ASSEMBLÊn aulomatically produces lower case
letters unless you use lhe Caps Shift.

Example:-

2.0.1 Adlhm.llc

LD 4, "r" produces lhe code 3E 61.

Addition and Sublraction within an operand is allowed. The sum or dilference ol Label
values, numeric values or ASCII characlôrs in any combination is accept€d.

Examples:- (0 LD A, "A" + 20H produces lhe code 3E 6l
(iD LD HL, LBL2 - LBLI calculales lhe difference between

Labels.

(iii) LD DE, START + 100H adds a lixed olfset to a Label.

2.6.5 Lrb.lr
ln Assembly language programming, Labals are used to indentify points in the program.
Wher€as in Basic you would GO TO a lin€ number, in Assembly language, you would JP
(jump) to a Label name. The line numbgrs in your Source code lislings are only lhere to
maintain the correct order ot the instructions and to allow editing.

You can also us€ labels to store the values ol constants and variabl€s. For example. lo
use th€ Firmwa.e ROM routine lo print on the sc.een, you would CALL OBBsAH. To
make your Source Code easier to understand, you could deline a label (e.9. TXTOUT)
with a value ot OB85AH and then CALL IXTOUT. Using this method also allows you to
make changes very quickly by allering the delinition ol a label. All subsequenl us€s ol
lhat label will also be altered lo the new value. Section 2.7.3 and 2.7.4 give dotails ol
using lab€ls as constants and variables.

47.

All Lab€ls have a lwo byle, 16 Bit value. Label names can be detined with a maximum
ol6 characlers. they mutl start with a non-numeric characler and cannot contain
spaces. Ali regisle. names and abbrevialions lor conditions a.e reserved names, and
cannot be used as a Labgl name, as the Assembler will try to gvaluats them as a
register or condition. Ths tirst character ot a label name must nol b€ a semi-colon, or il
will be recognised as a comment line. (S€e section 2.4.17), nor must it be a '/' as that
could b€ misunderstood as a printer command by LIST. To avoid any possible confusion,
always start a label name with a LETTER.

ORDINARY LABELS
Label names put into the Label Field and lollowed by an operation other than EQU o.
DEFL are given the value ot lhe current program address lor that instruclion. They are
not re-definable, and can only be delined once in a program. An ordinary label used as
an operand must be delined somewhere in the program listing, bul can be defined in a
line atter it is used as an operand. This allows lorward jumps to a Label name. Any
Lab€l can be used as an operand, providing lhat its value is within lhe limits for lhat
operation.

The label table display at lhe end ol an assembly pass can be inhibited, or can be called
up independately ol an assembly pass. The label table is always crealed by an assembly
pass, and lhis command only controls its display.

LÂBEL Wlth tho cursor at the lefl hand end ot the bollom screen line, press
CTRL and the K k€y. LABEL is displayed on the screen. Pressing
ENTER now will display the label table lo the screen (unless it has
been disabled). The screen will scroll through to the end ol lhe table
display and can be paused by ESC.

Press CTRL and K as above, lollowed by the Zero key. This will
disable the label lable display.

Press CTRL and K as above, lollowed by the 1 key. The label table
display will be enabled and displayed on lhe screen.

Press CTRL and K as above, lollowed by the / key. lf the label table
display is enabled, the table will be printed on the printer.

You can interrogate lhe label table to find the valuo given to any specilic label by
pressing CTRL and K as above, and then lyping the name of the label. The value in Hex
of thal label will be displayed on the screen.

e.g. LABEL LBLI will display lhe value ol LBL1.

2.0.8 Lrb.l Sllclng
All labels are stored as a 16.8lT value even iî they are delined as having a value ol 255
or less. It their value is 255 or less, thgn the Assembler will treat thsm as either 8.BlT or
l6'BlT, depending upon the instruciion wilh which they are used.

e.9. lf a label, LBL1 is defined as having a value of 80H, it will be stored as
0080H, and could be used as an 8-BlT value, by

LD A. LBL1

or as a 16-8lT value by
LD HL,LBLl

LABEL O

LABEL I

LABEL I

44.

etined with a maximum
and cannol contain
raserved names, and

ùaluate them as a
rot be a semi-colon, or it
must it be a '/' as that
d any possible conlusion.

ion other than EOU or
at instruclion. They are
I ordinary label used as
but can be delined in a
a Label name. Any

hin the limits for that

rhibited. or can be called
i created by an assembly

ottom screen lin€, press
the screen. Pressing
I screen (unless il has
h to the end ot the tabte

Z€ro key. This will

1 key. The label table
screen.

/ key. ll the labet table
n the printer.

' specitic label by
label. The value in Hex

s having a value ol 255
them as eilher 8-BlT or

I will be stored aS

lf its value is defined as greater than 255, it will always be treated as a 16-8lT number.

It is possible to access the high and low bytes ol a labsl value separately by preceeding
the label name when it is used as an operand by < to access the HIGH byte, or by >
to access the LOW byte.

ÊXAMPLE. A lâbel hes beên defined thus:
LBL1 EOU sCBOH

The inslruction LD A,< LBL'I
will lak€ the HIGH byte ol lhe label, and is equivalent
to LD A,5CH

The instruçlion LD A,> LBLI
will take the LOW byte of the label, and is equivalent
to LD A,OBOH

The direclion in which the < or > is pointing indiÇales which byte is
taken.

The lab€l does not have to be delinod by EOU, and any label can be 'sliced' in lhis way.
It is importanl to remember that ALL label names should starl with a LETTEF. Never
start a label name with '>' or '<' as the Assembler will produce errors when that label
name is used as an operand.

2.0.7 JR'DJNZ
The relative ollsets lor these two jump instruclions can be delined in a number of ways.
Normally you would use a label as lhe operand;

LOOP
Z,LOOP lor a conditional jump

where the Assembler will calculale lhe correct forward or backward oflset.

You can use a numeric oflsel if you wish, bul this would cause errors in your program if
you change lhe Source code within the limits ol the jump without changing lhe JR
inslruclion.

JR
OT JR

JR2
Jn +2

JR -2
JR OFEH

jump forwards 2 bytes

jump backwards 2 bytes

2.0.8 Aæcmbllng Sourc. Cod.
To Assgmble the Source C.ode thal is currenlly in the Source code bufler. make sure
lhal the cursor is al the left hand end ot the bottom screen line, and press CÏRL and
ihe A koy together. ASSEMBLE will be displayed on the screen. ll you press ENïER, the
Source code will be Assembled into the Object Bufler, and lhere will be no oulput to the
screen or printer untjl the end oJ lhe Assembly. lf you have enabled lhe label lable

49.

display, lhen the label lable is shown on the screen, bul if it is disabled (LABEL 0) then
you will see the Assembler's cursor re-appear at the bollom ol the screen when
Assembly is complele.

ll you require a lull Assembly listing on lhe screen. then having pressed CTBL and the A
key to display ASSEMBLE on the bottom screen line, you should then press lhe S key on
ils own lollowed by ENTER. The Assembler makes two passes through the Source C,ode
listing and the firsl pass will nol produce any screen oulput. There will be a delay belore
an),lhing is prinled on the screen which will vary according to the length ol your Source
Code. The second pass ol lhe Assembler will produce a lully assembled listing
consisting oi the currenl program address in H€x, lhe Hex code produced and lhe line
of Source code relaling to that code. Producing a screen oulput will obviously slow
down the assembly process quite considerably. The screen outpul will conlinously scroll
up the screen throughoul the assembly process. lf there is a parl ol the lisling thal you
wish to sludy, you can lreeze the Assembly process by pressing ESC once. the
Assembler's cu.sor will appear on the boltom screen line, and lhe Assembler will wait
indelinitely until you eilher press SPACE to conlinue the Assembly process, or until you
press ESC again to aborl the assembly process.

You are more likely to want to produce a lully assembled lisling onto your prinler ralher
than lh€ screen, and to achieve lhis, press CIRL and the A key to display ASSEMBLE
on the scre€n. then press the / key (this koy also has ? engraved on il) lollowed by
ENTER. As with scre€n outpul above, ther€ will be a delay while the Ass€mbl€r makes
its first pass lhrough the Source Code, lhen the printer will be acc€ssed to produce lhe
assembled lisling during the second assembly pass. ll you press the ESC key once
during the assembly process. the Assembler will stop and wail for eilher SPACE to
continue or a second ESC lo abort.

With both screen or printer output. the label table is displayed if it is enabled (LABEL 1)

To summarise. ASSEMBLE produces no screen or printer output.
ASSEiIELE S produces screen ouiput.
ASSEiIBLE, producesprinteroutput.

ïhe Objecl code is always produced, and slored in the Object Buffer.

2.7 ASSEIIELER DIRECTIVES
These are nol operalion names.ecognisgd by the CPU and are included to simplily the
process ol writing machine code. They are used by the ASSEMBLER, at assembly time,
to create messages, data bytes. etc. They are enlered into the listing, with a line number,
by writing the Directive name into the oæration lield. They can be identitied with labels
and all require an operand except ENO.

Two of these Assembler Diractives are compulsory in every p.ogram you write; namely
ORG and END. An error message is produced il either is missing.

2.7.1 oRC
Dofin€s tho address ol the tirst byie ol the assembled cod€ and lh€relore the base
address from which allother lab€lvalues are calculated. ll must be dstined in the listing
belore any olher inst.uction. Comm€ni lin€s can precedG it, but it is good practice to
define it in the lirst line you ent€r.

50.

th€ Hex code produced by the ASSEMBLER is written into the Object Buifer from
where it is Saved to cassette. Label * delines the starl ol lhis Buffer, and is set by
the ASSEMBLER. The operand for ORG can be a number; a Label, so long as it has
already been delined; or Label * . Only O E ORG per program is allowed.

ll a program is ass€mbled with ORG * , the code in lhe Object Bull€r is correctly
assembled lor ths Buller addresses, and can be run there {See Section 3). Any other
ORG address will produce code in lhe Object Bulfer designed to run from a differenl
address.

2.7.2 END
This signifies the end ol lhe program. Allhough there may be lines ol program listing
alter the END stat€ment, lhe ASSEMBLER will ignore them.

2.7.3 EOU
This Assemblg. Directive assigns a value to a Label name. lt does not put any code into
the Obj€ct Butf€r. Labels are normally given a value equal to the current program
address {based on your OBG), but EOU and DEFL will lorce a label to have a specilied
value. Once a Label is assigned a value by EOU. ii cannoi b€ re.detined. Any numeric
value, ASCII character or other Label name is accepted as an op€rand, but il a Label
name is us€d as an operand, it musl already have be€n datlnad ln ! pr.vloul llnr ln
th. lldlng.

The Lab€l nam€ is put inlo the Label field; EOU is pul inlo the operation field and the
operand in th€ operand field. A spacial operand for use with EOU and DEFL only is $ i.e.
LABEL EQU $. This gives the label a value equal to the cu.r€nt program address.

2.7.1l)É?L
This Assembler Direclive also allows you 1o define the Labelvalue, bul it also allows you
to redelin€ the value as often as you wish within a program. At each new definition, the
previous value is losi. A Label is only re-definable if ils tlrrt detinition in line order in the
listing is by DEFL. Subsequenl delanitions can be by DEFL or EOU, but it remains re-
delinable. You cannot change an €xisting ordinary Label into a re-definable one. Having
established a Label name using DEFL, you cannot use the same name lor an ordinary
Label to idenlily parl of the prog.am. lt can only be re-defined by DEFL or EOU.

Example:

c).io 1

oo1(:)
()o?o
(]{l::(J
(JCr 4ç1

Qrl50
a-)cr6{)
rl(:)70
QO80
(:)o9ù
c) 10c.)
(.) 1 1 tl)

L.BL T

i *****

; *****

I FLl

ORG 7C,(:){:)H

DEFL "4"
LD A. LFL 1

**** * * ** * **** * * * * ** + * *'É* JÉ*:*-F'* t* *

"Rest of progrànrl

*.*t* * *** *Jê.tt** t ** *J+t*Jç.t.*********+

DEFL LBL 1 +3OH

5l

ln the above exampls, lin€ 20 sets LBLI lo th6 ASCII value ol "A" which is 41 H, and
uses that value in line 30. Later in the program, LBLI has 20 H add€d to il, which glves
the ASCII value of "a", which is used in line '120.

When using other Label names as operands with EOU and DEFL, those Label names
musl hrv. bacn praylourly dlllmd ln li. lllllng.

As EOU and DEFL Labols are not strictly part ol lhe program, and do nol appsar in the
assembled code, lhey havg no add.ess relaied to lhêm, and so during the assombly
display, their ytlua is shown in the lett hand column, where you would expect to s9€ an
address.

At the end ol lh€ Assembly procedure, a lable of Lab€l values is produced, and DEFL
labels are flagged by an ast€risk.

2.7.5 DEFB
Assigns a value lo th€ single byte at lhe currônt assembly address. The valu€ must be
less than 256 (0100H) and the op€rand can be a numb€r, a single ASCII character, or a
Lebel wilh a vâlue lêss thên 256-

It is uselul lor deiining data bytes within a program.

Mulliple operands are allowed, separated by commas, e.g.

DEFB 10,0E3H,255,3CH

The assembled value of each oærand is displayed lo the screen or printer at assembly
lime (if screen or printsr output is requested). The lirst operand value is displayed in the
normal position along with the program address and the line trom the listing. The
second and subsequent operand values are displayed on lhe next line.

2.7.0 DEFW
Assigns â value to the next lwo bytes al the current assembly add.ess. The value is
siored with th€ LSB lirst. lollowed by lhe MSB: i.e. in the normal way for a two byte
value.

It is also uselul lor delining data bytes within a program.

Multiple oparands are allowed, separated by commas, e.g.

DEFW 40000,7C80H,3CH,1812

The assembled valuo ol each operand is displayed to the screen or printer at assembly
time (if screen or print€r output is requested). The lirst operand value is displayed in lhe
normal posilion along with th€ program address and the line from the listing. The
second and subsequent op€rand values are displayed on the next line.

2.7.7 DEFS
This creates a numb€r of blank bytes lrom the cufient assembly address. Th€ space
created has its byte values set lo 0. lts operand can be â number or a label name,
providing that the hbcl hls bran d3llnod ln I proylous llno ln ths llstlng,

You can usg DÊFS to create spaca tor tables or buffers that your program will use
when it is run. (e.9. Disc/casselte bulters). You can also use it to creata variable
amounls of blank space. For example, your program may require lhat a c€rtain seclion
ol code starts on a page boundary. (A page is 256 byles, and page boundries are
multiples ol 256 bytes. The LSB ol the address ol a page boundary will always be zero;
e.g. 7F00 Hox). To ensure that a giv€n inslruclion in your p.ogram does start on a page
boundary, use the following line of Source code before lhat instruction:-

line no. PAGE DEFS fiæH - > PAGE

The label PAGE rs lhe cu(enl program address.
".n.

-UO "",Using label slicing, > PAGE is the LSB ol this address. e.g. 005A Hex.
so lhe blank space created is 0100H - 0054H = 0046H.
The next inslruclion will be at PAGE plus the DEFS value

which is 7D5AH + 0046H = 7E00H

This DEFS instruction will always ensure lhal the next instruction stans on a page
boundary, irrespeclive of your OBG, and ol any changes you make to the Source cod€
before the DEFs.

2.7.ô DEF
Allows messages to be entered inio lhe listing as a string ol ASCII characters. DEFM
calculales the Hex code for each character. and puts thal code into the current Object
Bufler address. The operand must be a string ol ASCII characters enclosed within
quotes. When you type ihe firsl quote inlo the lisling. the EDITOR automatically displays
lower case characlers unless CAPS SHIFT is pressed. When the cursor is positioned
between string quoles, lower case letters are automalically produced. The lirst
character ot lhe operand mull be a quote.

2.7.9 PRNT
Allows scr€en or printer output lo be turned on and otl within an assembly pass. PRNT
is enlered into the listing (in the operation field) at the points where lhe display rs

required. ll does nol allect lhe machine code thal the ASSEMBLER produces.

lf, lor example, you have altered parl of a listing, and require a print out ol the seclion
thal has been altered. you can enable screen or prinler outpul lor thal part of the
Assembly process only, withoul sacrificing the increased speed of having no output lor
most of the assembly process.

PRt{ÎS turns on screen outpul lrom the next line in the lisling.

PRNT, direcls the Assembly outpui to lhe Printer.

PRNT OFF turns off the Prinl facility.

Ths operands S,r, OFF must be placed in the operand field in lhe Source Code. Use
ASSEMBLE (followed by ENïÈR) to give no screen or printer oulput until ihe PRNT
direclive requesls it.

2.7.10 ENT
Defines the ENTry point ot your program. lt requires one operand, which can be a
number or a label. When the assembl€d code is saved to Disc, the ENT address is
loaded into the file header as the Run address so that the resulting tue can be loaded
and run lrom Basic with RUN "name". lf no ENT address is specilied in your Source
Code, then the ORG address is taken as the ENT address and put into the file header.
As file headers cannot be overwrilten when saving to cassette, (see Section 2.5.2 on
Object Code), the ENT direclive is only of use when saving Object Code lo Disc. It you
are using cassettes to save Object Code, and you requirg a Run address to be
specified. you will need to Save the.Objecl Code lrom the Assembler and load it back
into its coflect location lrom Basic as explained in Section 2.5.2, and then Save it again
from Basic, adding a Bun address.

2.8 ituLït.sEcTroN souRcE FtLEs
To overcome the problems ot writing very large proorams, where lhere is insulticient
memory fo. the total Source Code and Object Code in memory together, it is prossible to
store lhe Source code in sections on cassette or disc. and lo assemble the seclions
into one long Object Code file.

A maximum ot 26 sections ol Source Code is permitted, each wilh the same file name
that also includes an identifying seclion lelter. The first seclion musl conlain an ORG
direclive, and the lasl section must contain an END direclive. lnlermediate sections
must conlain neithe.. Labels in any section can be accessed lrom any olher section,
exactly as il the whole Source COde was in memory at the same lime.

Ïhe principle ol the operation is that each section ol the Source Code is loaded into the
lext Bufler in turn, with the Assembler executing the lirst of the two assembly passes
on each seclion. Then each section ol Source Code is again loaded into lhe Text Bufler
lor lhe second assembly pass. Therefore, wilh a limiled size of lext Bufter, a very large
Obiect Code bufler can be created.

For maximum ellectiveness, each section ol the Source Code should be around 750 to
1000 lines in lenglh. lt is impossible to give detinite guidelines, but 10K ol Objecl Code
could be produced trom 6 seclions each conlaining around 1000 lines ol Source Code.

When using Discs to store the sections ol Source Code, the muttiple assembly process
is automalic, and lhe normal oplions of assembly output to the screen or prinler or
neither are available. Source Code seclions can be stored on more than one Disc il
required.

lf a casselle recorder is used, prompting messages are disptayed on the screen,
indicating when to slart, stop or rewind the tape to access the correcl section. Each
seclion of the Source Code on the cassette does nol need to lollow On immediâtely
lrom lhe last, as the assembly process allows you time to wind the casselte to the
correct localion belore continuing.

2.E.I SAVING A SECTION OF SOURCE CODE
The Multisection Source Code commands lor cassette and disc, are atmosl lhe same
as for normal Source Code. (Seclion 2.5.2). The main dilterehce is that in ptace ot lhe
suflix l after the tile name, a seclion lelter is specilied thus

54

SAVE "nrn." * A
where "name" is the file name as normal

* indicates a multi-section Source fue lile
A is the section identifier.

It you delined "name" as a FILE name, you can enter this command by typing

CTnL S lor SAVE
CTnL a lor "name"
CTRL 3 lor"*"
lollowed by lhe Section lelter.

N.B.
The " * " symbol is available lrom both SHIFT 3 and CTRL 3.

The Asssmbler will take the lile name "name" (which must be identical lor all s€ctions
of the same program) and add " * A" lo the end of the name. This effectively reduces
the maximum number of characters permissiblg in the til€ name by two.

When Saving the various sections, you must make sure thal the seclion adentilying
letters are in order, and are consecutive letters. You cannot miss oul letters in lhe
s€quence. You musl also always identify the lirst section as " * A"- When Saving to
Disc, a Type pad ot ".SCE" is given unless you specify otherwise in the lile name.

Wh€n you are making changes to various sections of Source Code as you reline your
program, il is a great help to keep a record of the seclion name and seclion letler in a
comment line at the starl ol lhe lisling lor eâch section. This will help to avoid the
possibility ol overwriting lhe wrong section, particularly on Disc, when you save the
modiliÊd section ol Source C,ode.

..9. 0(x,5 ; "nrma" # C
lxn8 ;
mlo (Sourct Codr lor S.cllon C lollowr)

2.8.2 LOADI{G A SECT|OI{ OF SOUFCE CODE
Altorations lo any section ot a Multi-Section Source Code file can be made by loading
that s€ction, and subsequently Saving it again with the sam8 til€ name and section
identilying letter. ll you are using Discs, you can Overwrite the old lile to save Oisc
space. The Losd commands lollow the normal rules described in Section 2.5 and 2.5.3
but you must specily the Section letters as tollows:

loAD"nrma" t A
Whare "name" is tha lile name as normal

* spscilies a multi-section Source code file
A is lhe sêclion lêtter

ll you have delined "nam€" as a FILE name, you can enter this command by typing

CTnL I lor LOAD
CTRL 4 lor "name"
CTnL 3 lor"*"
lollowed by lhe Section letler.

The Assembler will put lhe " # A" into the correcl place in the lile nam€ for you.

2.E.3 VERIFYII{G A SECTION OF SOURCE CODE
Providing lhat a section of Source code has been Saved and is also the currenl section
in memory, you can Verily the Save with

VERIFY'îrm." * A

2.8.4 ASSEMBLING A MULTI.SECTION SOURCE FItE
To Assemble mulli-section Source Code liles, wilh no screen or printer outpul, use the
command

ASSE BLE * "n.m!"
where ASSEMBLE is accessed by CTRL and the A key

indicat€s mulli-section Source liles
"name" is the lile name used when Saving the Source Code.

The Assembler automalically adds the identifying letlers lo the lile name tor each
seciion.

It you have detined a FILE name wilh the 'name" ol the mulli'parl Source Code liles,
this command can be accessed by three key strokes:-

CTRL A tor ASSEMBLE
CTRL 3 lor':#"
CTRL 4 lor "name"

lf the Source Code tiles are stored on cassette, lollow the screen prompts lo set the
lape lo the required section and lo press PLAY. The assembly process waits lor you to
wind the casselle to the cofiect place, so lhe sections ot Source Code do nol need to
be consecutively recorded on the cassetles.

lf the Source Code is stored on Disc, the whole process is automatic with screen
prompts to indicate which section is being assembled. lf you have slored your Sourcs
C.ode on more than one Disc (or on two sides ol ihe same Disc), the Assembler will
indicate ihai it has not lound a particular section, aod will wait lor Discs to be changed.
You will be offered the options to "B€try or Carlcel". Press R lo try to load lhal seclion
again, or C lo cancel the whole assembly.

ll you require screen or printer output of the lully assembled lisling, then you should
type S (lor Screen) or i (for Printer) belore the rÈ "name" in the Assemble command
i.e.

ASSEI{BLE S # "î!m!" lor sçreen oulput
ASSE BLE, # r'nrmC' lor prinler oulput

Al Assembly time, you may well get an Assembly error such as "jump out of Range . ll
lhis happens, amend the appropriale Source Code section and Save it again (see
Seclion 2.8.1 and 2.8.21ot Loading and Saving) ensuring that you use the correct
Section identilying letter. Having Saved lhe amended section, reslart the Assembly
process with the appropriale ASSEMBLE # command as described above.

56

fo help explain lhs multi-soction assembly process. try the lollowing short example:-

1). Type in the tollowing Source Code

ôÔ 1 (:) 0R6
0o?.-) TxTouT E6 .J

C}O3O SÏART LD
Q(T4O LD
and Save with lhe command

*
OBFSAH
HL, MsG
B! LEN
SAVE "t.!t"# A

2). NEW the Sourcê Code, and enter part two thus

LD A. (HL)
PUSH HL
FUSH BC
CALL TXTOUT
FOP BC

and SAVE with the command SAVÊ "i!tl"* B

3). NEW the Source Code, and enter pan three thus
(]O lQ FOP HL
OO?O INC HL(:x1f,.-r DJNZ LOoF
r_)c)4o RET
{J05o HSG DEFI'I "A tnl-llti-pârt Assembly"
l)060 LEN EAU !9_M56
tTOZ(t END
and Save with the command SAVE "l.!1"*C

4). Type in the command ASSEITBLE S*"tost"

which will invokg th€ multi-parl assembly and display the resulls on lhe
screen.

The whole ot the Obiect Code will be stored in memory in th€ Obj€cl Buffer and you will
nêed to Save il to Disc/Tape as described in Section 2.5.2.

2.ô.5 ASSE BTY FROII DISCTTAPE TO DISC'TAPE
It is possibl€ to ertend the multi-parl Assembly process lo store lhe Object Code onto
Disc/Cassette in 2k blocks as rl rs produced. This lrmits lhe size ol the Obiect Bulfer to
iusi ov€r 2k in length. which allows you lo use up to 26 sections oi Source Code thal
can each be made much longer than if the whole Object Buifer had to reside in
memory.

tlc) I o L00F
{lo?0
(]r-)30
(:lo4r1

c)ô5ô

57.

The command form is:-

ASSEMBLE * "n!m.","nrmecod!"8 lor Binary code files
ASSEIIBLE # "n!m.","n!macodo"C lor CP/M ".COM" jiles

where ASSEMBLE r "name" is idenlical to that described in section 2.8.4,
"namecode" is the name given lo the Objecl Code lile to be Saved,
B indicales a Binary code lile (saved as "namecode.BlN"),

o. C indicates a CP/M ".COM" file (saved as namecode.CoM).

lf you aae using ca599tt9!, lhe screen prompls will be given as ôormal for a mullipart
assembly, bul during the second Assembly pass, you will occasionally be asked to

"Pre3s PLAY and REC lhon any ksy". This indicates thal 2K of Object Code is ready

lo be Saved. When this message appears, make sure you have your OBJECT CODE
CASSETTE loaded belore recording- ll is a good idea lo knock out the record protecl
tab on your Source Code casselle belore starting. You can always cover it wilh
adhesive lape il you do need lo re-record a Source Code lile. Ïhis will eliminale the
danger ol over-writing your Source fude when asked to save a block of Obtect Code.
When a block ot Object Code has been saved lo cassetle, remove the cassetle, but do
not wind il in either direction. Replace lhe Source Code casselle and carry on.

It you have Dlscs, you can use any combination ol DISC lN or OUT with TAPE lN or
OUT. ll you use DISC lN and OUT the only limilation is that the Disc drive storing lhe
Object Code must NEVER have its disc changed during assembly. The DOS will produce
an error il you do change a disc with an open lile on il, and lhe assembly will be
aborled. the.efore, il you only have one disc drive, lhe whole ol the Source Code and
the Objecl Code musl be abl€ to reside on the one side ot one disc. This limits the
maximum amount ol Object Code lo a.ound 2l K, whach requires about 145K ot Source
Code. This will fill one side of a blank disc.

lf you have two drives, you should specily lhe Drive parts in the filenames, with Source
Code on one drive, and Objecl Code on the other:

e.g. ASSE SLE * "A: AME

""8:NAMECODE"E
This will take Source trom drive A and store Obj€ct on drive B, and will allow you lo
change discs in drive A if the Source Code will not fil onlo one disc. Theoretically. this
would allow you lo produce up to 64K ol Objecl code il you wishedl!l

You can preceed lhe " * " wilh S lor screen oulput, or / for prinler outpul.

The size ol the Object Buffer in memory is only ever just over 2K long, and it is dumped
to disc or tape when the 2K is full. The 2K Casselte/oisc buller at the end ol the
Assembler is used lor the loading ol the Source Code, and a separate 2K Cassetie/Disc
buffer is required lor the Objecl code. The butler is coincident wilh the ObieÇl Bulfer,
both bullers sharing lhe same 2K block of memory.

Ihe lirst pass of lhe Assembler will happen as normal for a multi'part assembly. but
belore the second pass, the output file is opened with the usual "Overwrite / Abandon /
Backup" options if the lile already exists on disc.

At the end ol Assembly, the Object bulfer only conlains the last 2K block to have been
Saved, so it is not possible to Verity the Objecl Code or to run il in the Objecl Bufler.

58.

2.9 ASSE ELER ERROR MESSAGES
Thg Edilor part ot the Assembl€r will produce error messages under csrtain conditions
as follows:-

ARÊAK
(i) lf the ESC key is pressed while entering or ediling Source tude.
(ii) ll the ESC key is press€d during Loading/Saving operations.
(iii) ll the ESC key is pressed TWICE during Listing or Assembly.

(one press ol ESC pauses Listing or Assembly - SPACE
continues)

PRINTER OFF LII{E
ll print6r output is requested and lhe printer is olf line or otherwise appears
BUSY lor more than 3 seconds. It prinler is put on line, printing commences. ESC
ESC will exit if printer is not required.

ME ORY FULL
(i) It there is no room to enter a line ol lisling into Source Code.
(ii) During Assembly il there is no room lo €xpand lhe Object Buller.
(iii) During multipart Assembly il there is nol enough room to load

lhe next section ol Source Code.

sYl{Î x ERROn
lf a command is entered incorreclly, or with oul.of-range parameters.

UNKIIOWN CO AND
ll an External Command cannot be lound jn any ROM or BSX.

DlærTrpa arors are normally produced by the operating sysiem and are documented
in the AMSOFT manuals.

FILE ALREÂDY EXISTS
lî a named lile for Saving already sxists on Disc.
Options given are Overwrile/Backup/Abandon.

FITE DOES NOT EXISI
R.lry, Cmc.l

lf a namod file lor Loading is not found on the current Disc.
Chang€ Disc and Retry or Cancel to abort.

VERIFICAIION FAILED
Data error on verilying a Saved file.

WRONG FILE WPE
ll non-valid Source Code is attempted to be loaded inlo the Assembler.

During the Assembly process, the following errors may be displayed on the screen. they
will be lollowed automatically by a display in the EDIT mode ol the line lhal contains lhe
error. The cursor will be al the right hand end ol lh€ line, as if you had iusl EDlTed lhe
line.

II{VALID ORG (i) lt th€re is not an ORG at the start ol the program listing.
(ii) ll there is more than one ORG in the listing. (The second

occurence produces lhe error)

INVALID NU BEN
lf a decimal number contains a non-numeric character. o. il a Hex number
contains an invalid characte..

IiIVALID OP
(i) It an op€ration nam€ is not recognised.
(ii) lf a numeric operand has a value out of range lor lhe particular

operation (e.9. loading a single register with a Label whose value
is greater lhan 255).

(iii) lt an invalid mnenomic is €ntered. (e.9. if there is an incorrect
numbe. ot operands).

LABEL NOT OEFINED
(i) lf an operand is not a recognised register or condition and no

label ol lhat name has been defined.
{iD lf a Hex number does not commence with a number.

{iiD lf EOU, DEFL or DEFS have an operand that is a label which has
not been defined in a previous line of the listing, or in a previous
section. (Th€se directives cannot refer lorward to labels).

LÂBÊI- ALREADY DEFINED
ll a Label nâme is defined more than once ând the first definition is not DEFL.
The line conlaining the r.cond definition is displayed.

NO Er{D t}tSÎR.
lf there is not a line containing the END instruclion.

JU P OUl OF RANGE
ll a relative jump (JR or DJNZ) is asked to jump to an address with an ollset of
more than + 127 or - 128.

2.10 SU IMARY OF COMMAI{DS
ASSE] BLE CTRI-A Assemble Source code cuffenlly in memory into

Object Buffer. No screen or p.inler output. ESC
will pause; SPACE to continue; ESC again to
abort

As above with assembled listing on.screen.

As above with assembled listing on printer.

Assembles Source code stored on DISC/TAPE
with file name "name". Max 26 sections. No
screen or prinler oulput. ESC will pause; space
10 continue; ESC again to abori. N.B. ESC during
a LOAD will abort.

As above with assembled listing on screen.

As above with assembled listing on printer.

ASSEMBLE * "n!mc","nrDacod!"8 or C
Assembles Source code slored on DISC/TAPE
with file name 'name". Automalically slores
Obieci Code back lo DISC/TAPE in 2K blocks
wilh file neme 'namècode.BlN". or
'namecode.CoM" No screen or printer oulpul.

ESC as above.

ASSE ELE S

ASSE]TELE
'ASSEIIIBLE # "n.m."

ASSEiIBLÊ S # "n!m!"
ASSE BLE, # 'n!m."

ASSE IBLE S * "n!m.","nâmecodr"8 or C
As abovs with assembled lisiing on screen.

ASSE BLE, r "n!mC',"nrmecod."8 or C

AUTO

AUTO r

AUÎO x,t

BASIC

CLEAR 1

CLEAR I
CLEAR O

CLEAR P

COPY rr,yy,:r

DELETE lqyy

EDIT

EDIT xr

ESC

CIRL +

CTRL B

CTRL X

As above wilh asssmbled listing on printer.

Aulo lin€ numboring. Slep valu€ as last
specilied: from last aulo line number.

Auio line numboring trom line x with last
spocilied Step value.

Auto lin€ numbering from line x with Step value
ol v.

R€lurn to Basic

Clears Source Code Buffer: Betains and protects
all current labels.

Clears all labels, including protected lab€ls.

Clears Object Buffer to zero length.

Removes protection applied to labels by CLEAR
T. Lab€ls remain in table withoul protection.

Copies lines xx to yy inclusive in Source cod€
and insorts them at or afler line zz.

Ogletes Source code from line xx to line yy
inclusive.

Oisplays lirst line of Source Code in Edit line at
bottom of screen.

Oisplays line xx ol Source code in Edit line at
bottom of screen.

While Editing or entering a command. abgrts
current Edit line. While Assembling or Listing,
tirsl press on ESC pâuses tunction; SPACE to
continue; ESC again to aborl.

Deline a default File name for Save/Load
functions.

Lisl Source code Jrom start ol lisling onlo
screen. 10 lines displayed. SPACE gives next 10
linês.

List Source code to screen lrom line xr for 10
lines. SPACE give next 10lines.

61.

CÎRL C

CTRL D

CTRL E

ESC

FlLE "nama"

LIST

LIST xr

CTRL F

CTRL\

LIST rr- As above.

LIST I List Source Code to printer lrom start of listing.
Continuous to end of lisling.

LlSl, rx Lisl Source Code to printer lrom line xx to end of
listing.

LlSl l rx- As above.

LIST LABEL List Source tue to screen lrom label LABEL for
l0lines- Space gives next 10 lines.

LISI rL BEL List Sourcè code to printer lrom label LABEL
through lo end of listing.

IOAD "n!ma" CTnL L Loads Source code file from DISCfiAPÊ with file
name "name" (only if il is valid Source code
file). Deletes all existing Source code and
Lab€ls.

LOAD "nrmr"N As above.

LOAD "nrmC'C Loads valad Source code file from DISCÆAPE
with file name "name'. Deleles previous Source
Code but retains and protects current Labels.

LOAD "n!ma"A Appends valid Source Code lile lrom DISC/TAPE
with lile name "nam€". New Source Code added
to end ot exisling Source Code. Deletes all
tabets.

LOAD "nrmr" * X Loads section X ol a multi-section Source lile.
Deletes all previous Source Code and labels.

LABEL CTRL K Displays label table lo screen if enabled.
ESC to pause: ESC again to abort, or SPACÊ
to continue.

LABEL, As abovo with printer output.

LABEL O Disables label table display.

LABEL 1 Enâbles label table display, and displays table to
screen.

LABEL NA E Displays to scrsen the Hex value ol label NAME,
il il has been defined.

iIONITOR CTRL ll Access lo Monitor AMMON it il is in memory.

iIODE I X,Y CTRL r Sets screen Mode 1.

Optional screen colours:
X = INK colour (0 lo 26)
Y = PAPER colour (0 to 26)

62

iIODE 2 X,Y CTRL 2 Sets scr€en Mode 2.
Optional screen colours as above.

NEW CTR! Deletes all Source Code and labels. Besets
assembler bufle.s to null statg.

RENU X CÎRLn Renumbers entire Sou.ce Code wilh step value
olx

REI{U X,Y Renumbers Sourc€ Codo lrom line Y to end in
steps of X.

RENUII X,Y,Z Renumbers Soutce Code lrom line Y to end in

sleps of X, giving line Y a new value of Z+ X.

SAVE"nrma"l CTRLS Saves Source Code with lilename of "name". (or
'name.scE" to Disc).

SAVE "nama"B Saves Objecl Code as Binary tile with filename
'name", ('name.BIN" lo Disc).

SAVE "nama"C Saves Obiect Codeas ASCII file with filename
'name", ("name.COM" to Disc).

SAVE "nrrfra" * X Saves a section of multi.part Source Code as
'name * X", ("name * X.SCE" to Disc).

X = Section suffix: Firsl section musl be * A:
subsequent letters must be consecutive.

VÊnlFY "nrma" CÎRLV verili€s incoming source or obiect Codo with
appropriate bufter (cassette). with Discs, oblect
code's lype part musl be specilied in name.
i.e. VERIFY "name.BlN".

VER|FY "nrma" * X Vorifies incoming Sourc€ Code with current
Source Code in memory lor a section ot multi'
part Source Code.

CTRL @ CTRL @ Resets keyboard expansion slrings. Also resets
FILE name to null string.

CTRL lalt cursor Moves cursor lo left hand end ol Edit lins at
bottom ol screen.

63.

sEcTtoN 3

USl q'A AS" rnd'A ITOI{'TOOETHER

cmory l$!p

((t{ItEi))

lbixt
Bù{flf

i8rrit

r)) SPâRI

Scrco lll

0/3 nofr |

ïert i
&{|ff i

lr ! |
i__r -_-_--__--_-r_-____--_ |

I

((r
I

imst vârs,
i + iJP llocl,

â36 lRsrl rtE. '
l.tc I

I

l lc Rdl

t000fi lonitor rtc. C0001
crn ôr lordcd hrrr
ù€{om |3illùlù

LOAD]Î{G ASSEMBLER E ITONITOR TOCETHER
Both programs use a Basic loader program, so make sure that you do not have any
important Basic in memory b€tore loading. As both programs are set up as RSXS, the
CPO464 should be as near to ils EMS (switch on) state as possible. lf you wish to
reserve a block of m€mory al the top of ths memory pool lor your own machine code ot
RSX, then alter HIMEM before loading our programs. (Don't forget to do a SYMBOL
AFTER 256 if you wanl to crsate further delined characters.)

Type RUN" (casselle) or BUN "MON" (Disc) to load the Monitor, and when asked lor
the "Stan addr€ss?" reply by pressing ENTER. This will locate the Monitor at the
highest availabl€ memory location, set HIMÊM to immediately below the Monitor, set up
the RSX and return you to Basic.

Type RUN" (cassette) or RUN "ASS" (Oisc) lo load and run the Assembler al the new
highest possible memory localion. HIMEM will be set very low and the Assembler will be
entered.

ln this way, there will be no conllict ol memory belween the Assembler and the Monitor.
bul the memory available to the Assembl€r will be reduced.

Ulc ol lhc * bbcl to lctl r progrlm
When you are using Al*ltAS, it stores lhe value ol HIMEM + 1 as the value ol lhe
" # " label, and uses lhis value as lhe start ot the Object Bulfer. This tabet can be
uselul when you are developing a Machine Code program with bolh AMMAS and
AlllrON in memory together.

Delining the ORG in your Source Code as ORG # wi inslruct AMMAS to lake the first
byte of the Object Builer as its Origin when you assemble the Source code. The

64.

resulting assembled code stored in the Object Buffer will, lhe.efore, be assembled
correctly io run in the Obiect Bulfer location.

Having asssmblôd the Source cod€, you can lhen access AMMON and use the Monltor
commands to tesl your program. (You should akeady have Saved your Source Code in
cas€ your program crashes lrrelrievably). lf you tind an error in your programmlng, you
can reenter AMMAS, make a change and reassemble lho code, and tesl lt again wilh
AMMON. When you are sure that jrour program is error lree, go back lo AMMAS once
more, and chang€ the ORG address to th€ location where your Machine codg will
ullimately live, and reassembls il. You can now Save the ObJect Code to Disc or
Cassetts, rsady to use on its own, wilhout r€quiring AMMAS or AMMON to be in
memory.

65.

DEC r lY+5) LD (HL).H
DEC A T.D (HL) . L
DEC Ê LO 'HL) I:2DEC BC LN III+5I.A
D€C C L0 (I X+5). Ê
DËC D LD (IX+s).C
OEC DE LD (IX+3).D
DÊC É t.D (tX+5).Ê
D€C H LD (IX+Ê).H
DÊE HL LD (TX.!).L
DEC IX LD (IX+5).]?
DEC TY LD (IY15) . A

l o (Iv+3) - t,iÈF Ë- r IY+5r - r
ii' - LD (tY+g).D
ii-, ..u LD (IY+5) .E
Ë; -' __ LD (rY+3):H
Èi rSr r. nr LD (IY+s,rL

LD (1Y.5).::
Ex (5Ê,.IY LD |15€4H).4
Er aF. a' F' l-D (i'564H,.FC
Ex DÊ:HL LD (.iÈ;a4H,. oE

LD (')5B4Hi.Hf
LD (':'564R).tl

lr'rl LD ,r'5B4Ht r IYIHr LD I '!B H).sF
I1r2 LD A. (BC I
IN A. {C) LD A,

'DÊ'IN F: {I) LD A. (HL'
rN c: (c) LD A..lr+5
IN D. {C) LD A. (IV+ \
IN E. C) LD n.71'FrF
IN H:(CI L.D A.A
IN L- LC) Lt a.Ê
IN. rÈL ' LO A. a
tNe (tx|5) Lo a.r)
INC (IY+s) LD A.F
INt] A LO Â.H
INC B LO A. I
INC BC LD A.L

LO A. ;::
INC D LD Â.F
I C DF I r) F. ,1.tL.)
INc Ê LD ['.rlx+5r
INC H LD F. ' IY+5)
INC r-lt. t0 B..r

r o ti.B
rNc IY tr' F.[l
INC L I-D t]. D
INC SP fO B.Ê
IN A. {::) LO F.I]
IND TD F.L
lNDÊ LO E. tr:
INI LD FC..O:iA4H)
INIR LD BC.CIÉg4H
JP (1584H Ll' [. rlrl \

rlt LD c ll+r'
JF Ix lD r'.(lY+'rt
JP IY LD C.A
JP C. O564H t t) a. F
JP F.']5S4H LL (.C
JF NC. a5A4H r n c. t)
.rP N2.O5e4H LO C.Ê
JF P.i 5A4H ln r.H
JP FÊ. (,5Ê4H LO C.r
JP PO. r)5A4H LO C. -.1l

.1P , tt9â4H LD 1,. (HL,
JR c::EH l-o o. i t.+qr
JR Nc. --EH I D tt. ' t,, +-.,
JR NZ. aEH t t' tr. a
,]R Z.:EH LD D. ET

,rR -ÊH LD n.a
LO (FC} . A LD D. LI
LD IDE). A TD D.F
LD (HL).A LD N.H
t.0 rHlt.a lo o.l
LD (HL).C LF D.::
LD (lil):D ln 0Ê.,q':6aH'
LD (HL).8 LO OE.

' '5rr4rr

3. (IX+5,
J. (rY.5t
3:A
3.4
l.c
:. Dr.E
:;Hl.L

4;C
4.E

5.8

5.Ê
5, F]

é. C

é.E

7.C
7rE

c. ô584H

Nc. O5A4H
NZ.O5€4H

FE.05€4H
PO. d5A4H
l. i':A4H
':r584H

HL. BC
HL. DE
HL.HL
HL. SÉ

4. ç

HL.IC
Ht_. 0E
HT.HL

tt. Bo

IY.BC
IY!DE

IHL)

Ér

c
0
Ê

t_
tr?

o.E

t.El.cl.D
l,Êt.H

2. (Ix+5)

?. B
:.c
:.8
a.t

sEcTloN 4

zEo MNEMOI{rCS

A lull llrl ol zEll n.mdtlc. .cc.pl.bl.lo A As

ADC

ADC

ADC

ADC

ADD

TTIT
BIT
BIT
AIT
Btl
AIT
Êi I1
BtÏEII
FIT
AIT
FI I
EIT
EIT
È11
EIT
BIT
FIT
BIT
EIl
ÉIT
BITBII
BIi
Bt-r
FIT
FIT

(I X+5)

B
c
D
É
rl
L
tr?

66.

2.H
:, L
i. (HL'
l. (lr+3)
:. (IY+=)
3:B
3.C:.D
3.H
3.L
4. (I X+5'
4. (tv+5)
4,8

4,8

iiixrr
5. (I x+!)
5r I IY+5t
s:a
s. D

5.H

6,E

7. (lx+5)

a\c
7ië

(t)(+5)
(IY+5)
E
c
D
E
H
L
(HL

'(rx+5)
(IY+5)
B
c
D
E

L

F
c
D
E

a
c

r)
E
H
L
lHt-,
(r x+5)

c
D
E
H
L

(HL)
(I X+5'
(I Y+5)

B
c
D
E
H
L

rrllt
(I X+5)
(tY+5)
B
c
D

H
L

8H
loH
raH
20H
2Bt\
:OH
J8t1

HL. BC
|f,, DÊ
HL. HL

ù, Ê

o;0

t. (HL)
t. r t r+5)
r, { l Y+3)

,.9t.c
I.Dl.€l.H
l.L
2; (Il+5)
2. (tY+5)
?.4

::ô

FES O.C
RES !r. DREs (}.Ê
RES O,ll
FES N. L

RES l. (Ir+5)
FGS l. ,I Y+5)

RES I.B
RES 1. CRÊS r,0
RES 1. EFËS T!HRES I.L
RES 2. (HL)
RES l: (IX+91
REg 2, (lY+5,
RES 2:A
FiES 2: C
RES :. D
RES 2.E
RES :.H
RES]. (HL)
RES f. (JX+5)
FEs 3. (I Y+5)

FEg f, B
ÊES f.C
iiËË i:Ë
RÊS f, H

RES 4. (HL)

nEs 4: (IY+5r
RÉS 4.S
RËS 4.C
RÊS 4, D
RES 4.E
kEs 4:H
RES 4.L
RË5 5: (HL)
RES 5. (t X+5)
RES 5, { IY+5)

REg 5. F
tsEs s:C
RES 5.D
RES 5.E
RÊ5 5.HREs 5.L
FES ô. (Hl)

RES é. (IY+5)

FES ê:B
FÊS 6.D
FES 6.E
RÉS 6.H
RES 7. (HL)
RES 7: (rX+5'
ÊES 7. (IY+5)
FES 7.8
RÊS 7.C
RÊS 7.D
RES 7. E
RES 7.H
RES 7.L
RE' C
RET T1

RET NCRET NZ

ÊET Z
FE-I I
RETN

SUA D
SUB E
SUB H
SÙB L

SUB 3'
XOR HIOF LxoR s2loR cxmD

Ertrr ZUI lnatrucllonr.
There are a numb€r ol Z8O insùuctions thal are îot publish€d or documentsd by Zllog,
but which appe8. to work on all æ0s. Th€y have b€€n lound by oxp€rimenl on some of
the apparenily missing Hex code s€quences. They a.e mainly operations on the
individual halves ol the lX and lY regist6r pairs.

AMMAS will accept thsse instructions in lhe forms shown below, but AMMON will
decode them to their HL equivalenls. G6narally, th€ MSB ol lX is called XH and lhe LSB
is callsd XL; th€ MSB ol lY is call€d YH and th6 LSB YL. Thâre is one extra adthm€Îic
insùuction, SLL, which Shifts the byte to the lett by one BlT, puts BIT 7 into the CARRY
and SETS BIT 0. The flag r€sults lor SLL are as lor SRL.

The 6xlra instructlons are:-

LD A; YH

ADC TH
ADC YH

ADC YL
SUB XH
SUB YH
SUB XL
SUB YL
SBC IH
SEC YH
SBC IL
SÈC YL

OR IL

SLL (HL}
sLL (I X+5)
sLL (IY+5'
SLL BSLL C
SLL D
SLL F
SLL H
SLL LrNc xlt
lNC YH
DÊC XH
DEC YH
LD XH.I2
LD YH. f:
INC YL
DEC XL
DEC YL
LD IL.32LD YL:32LD È.IH
LO B: YH
LD B.ILLD B, YLLD C. XH
LD C. YH
LD C. XL
LD C: YL
LD D. XH
LD D. YHLO D, XLLD D. YL
I.D E: IHLD E. YH
LD E. XL
LD É: YL
LD XH. ELD YH. Ê
LD XH, CLO YH.CLD

'}I.
DLD YH. DLD IH.E

LD YH.E

LD XL: Ê
LD YL. B
LD IL.CLD YL. CLD IL. D
LD YL; D
LD XL. ELD VL, E

68.

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

