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Abstract
In this work, we develop a Monte Carlo Tree Search
based approach to procedurally generate Sokoban
puzzles. To this end, we propose heuristic met-
rics based on surrounding box path congestion and
level tile layout to guide the search towards interest-
ing puzzles. Our method generates puzzles through
simulated game play, guaranteeing solvability in all
generated puzzles. Our algorithm is efficient, capa-
ble of generating challenging puzzles very quickly
(generally in under a minute) for varying board
sizes. The ability to generate puzzles quickly al-
lows our method to be applied in a variety of appli-
cations such as procedurally generated mini-games
and other puzzle-driven game elements.

1 Introduction
Understanding and exploring the inner workings of puzzles
has exciting implications in both industry and academia.
Many games have puzzles either at their core (e.g. Zelda:
Ocarina of Time, God of War) or as a mini-game (e.g. lock
picking and terminal hacking in Fallout 4 and Mass Effect
3). Generating these puzzles automatically can reduce bottle-
necks in design phase, and help keep games new, varied, and
exciting.

In this paper, we focus on the puzzle game of Sokoban.
Developed for the Japanese game company Thinking Rabbit
in 1982, Sokoban involves organizing boxes by pushing them
with an agent across a discrete grid board. Sokoban is well
suited for consideration for several reasons. A well-known
game, Sokoban exhibits many interesting challenges inherent
in the general field of puzzle generation. For example, the
state space of possible configurations is very large (exponen-
tial in the size of the representation), and thus intractable for
search algorithms to traverse. Consequently, ensuring gener-
ated levels are solvable can be difficult to do quickly. Fur-
thermore, it is unclear how to characterize what makes an
initial puzzle state lead to an interesting or non-trivial so-
lution. While Sokoban has relatively straightforward rules,
even small sized puzzles can present a challenge for human
solvers.

In this paper, we propose a method to procedurally gener-
ate Sokoban puzzles. Our method produces a wide range of

Figure 1: One of the highest scoring 5x5 puzzles generated by our
method. The goal of the puzzle is to have the agent push boxes
(brown squares) such that all goals (yellow discs) are covered by
the boxes. Yellow filled boxes represent covered goals. Obstacles
(gray squares) block both agent and box movement (Sprites from
The Open Bundle1)

.

puzzles of different board sizes of varying difficulty as eval-
uated by a novel metric we propose (Figure 1 shows an ex-
ample puzzle generated by our method). Beyond simply be-
ing able to generate more content for Sokoban enthusiasts,
we can envision puzzles such as these used as inspiration or
direct input to game elements that correspond well to puz-
zle mechanics. Examples include skill-based minigames or
traversing rooms with movable obstacles. Furthermore, hu-
man designed puzzles only represent a small fraction of the
possible puzzle space. Procedural puzzle generation can en-
able the exploration of never before seen puzzles.

Currently, the state of the art in procedural Sokoban puz-
zle generation tends to use exponential time algorithms that
require templates or other human input. As a result, these
methods can take hours or even days to generate solvable puz-
zles even on small boards. Finding ways to address this issue
can significantly enhance our ability to achieve the potential
benefits of procedurally generating Sokoban puzzles.

1http://open.commonly.cc



Figure 2: A solution to one of the generated Sokoban puzzles (score = 0.17). Each successive frame depicts the point at which the next box
push was made, along with the movement actions (green arrows) the agent took to transition from the previous frame to the current one.

To that end, we propose the use of Monte Carlo Tree
Search (MCTS) for this puzzle generation. We show that the
generation of Sokoban puzzles can be formulated as an opti-
mization problem, and apply MCTS guided by an evaluation
metric to estimate puzzle difficulty. Furthermore, we model
the MCTS search an an act of simulated gameplay. This al-
leviates current bottlenecks by eliminating the need to verify
the solvability of candidate puzzles post-hoc. Overall, the
contributions of this work are three-fold:

• We formulate the generation of Sokoban puzzles as an
MCTS optimization problem.

• We propose a heuristic metric to govern the evaluation
for the MCTS board generation and show that it pro-
duces puzzles of varying difficulty.

• Our method eliminates the need to check post-hoc for
board solvability, while maintaining the guarantee that
all of our levels are solvable.

2 Background
There have been many applications of Procedural Content
Generation (PCG) methods to puzzle games, such as ge-
netic algorithms for Spelunky [Baghdadi et al., 2015], MCTS
based Super Mario Bros [Summerville et al., 2015], and map
generation for Physical TSP problem [Perez et al., 2014b]
and video games [Snodgrass and Ontanon, 2015]. Other ap-
proaches proposed search as a general tool for puzzle gen-
eration [Sturtevant, 2013], and generation of different start
configurations for board games to tune difficulty [Ahmed et
al., 2015]. Recent work has looked at dynamically adapting
games to player actions [Stammer et al., 2015]. Smith and
Mateas (2011) proposed an answer set programming based
paradigm for PCGs for games and beyond. A recent ap-
proach parses game play videos to generate game levels [Guz-
dial and Riedl, 2015]. Closely related to our work, Shaker et
al. (2015) proposed a method for the game of Cut the Rope
where the simulated game play is used to verify level playa-
bility. We refer readers to the survey [Togelius et al., 2011]
and the book [Shaker et al., 2014] for a more comprehensive
and thorough discussion of the PCG field, and to the survey
particularly for PCG puzzles [Khalifa and Fayek, 2015].

2.1 Sokoban Puzzle
A Sokoban game board is composed of a two-dimensional
array of contiguous tiles, each of which can be an obstacle, an
empty space, or a goal. Each goal or space tile may contain at

most one box or the agent. The agent may move horizontally
or vertically, one space at a time. Boxes may be pushed by the
agent, at most one at a time, and neither boxes nor the agent
may enter any obstacle tile. The puzzle is solved once the
agent has arranged the board such that every tile that contains
a goal also contains a box. We present an example solution to
a Sokoban puzzle level in Figure 2.

Previous work has investigated various aspects of computa-
tional Sokoban including automated level solving, level gen-
eration, and assessment of level quality.

Sokoban Solvers
Previously proposed frameworks for Sokoban PCG involve
creating many random levels and analyzing the characteris-
tics of feasible solutions. However, solving Sokoban puzzles
has been shown to be PSPACE-complete [Culberson, 1999].
Several approaches have focused on proposing approximate
solutions to reduce the effective search domain [Botea et al.,
2002; Junghanns and Schaeffer, 2001; Cazenave and Jouan-
deau, 2010].

Recently, Pereira et al. (2015) have proposed an ap-
proach that uses pattern databases [Edelkamp, 2014] for solv-
ing Sokoban levels optimally, finding the minimum neces-
sary number of box pushes (regardless of agent moves). The
authors in [Perez et al., 2014a] applied MCTS for solving
Sokoban levels, but concluded that pure MCTS performs
poorly.

Level Generation
While there have been many attempts for solving Sokoban
puzzles, the methods for their procedural generation are less
explored. To the best of our knowledge, Murase et al. (1996)
proposed the first Sokoban puzzle generation method which
firstly creates a level by using templates, and proceeds with an
exponential time solvability check. More recently, Taylor and
Parberry (2011) proposed a similar approach, using templates
for empty rooms and enumerating box locations in a brute-
force manner. Their method can generate compelling levels
that are guaranteed to be solvable. However, the run-time is
exponential, and the method does not scale to puzzles with
more than a few boxes.

Level Assessment
There have been several efforts to assess the difficulty of puz-
zle games. One example is the very recent work by [van
Kreveld et al., 2015], which combines features common to
puzzle games into a difficulty function, which is then tuned



using user study data. Others consider Sokoban levels specifi-
cally, comparing heuristic based problem decomposition met-
rics with user study data [Jarušek and Pelánek, 2010], and us-
ing genetic algorithm solvers to estimate difficulty [Ashlock
and Schonfeld, 2010]. More qualitatively, Taylor et al. (2015)
have conducted a user-study and concluded that computer
generated Sokoban levels can be as engaging as those de-
signed by human experts.

2.2 Monte Carlo Tree Search (MCTS)
Monte Carlo Tree Search is a best-first search algorithm that
has been successfully applied to many games [Cazenave and
Saffidine, 2010; Pepels et al., 2014; Jacobsen et al., 2014;
Frydenberg et al., 2015; Mirsoleimani et al., 2015; Sturte-
vant, 2015; Steinmetz and Gini, 2015] and a variety planning
domains such as multi-agent narrative generation [Kartal et
al., 2014], multi-robot patrolling [Kartal et al., 2015] and
task allocation [Kartal et al., 2016], and others[Williams et
al., 2015; Sabar and Kendall, 2015; Hennes and Izzo, 2015].
Bauters et al. (2016) show how MCTS can be used for gen-
eral MDP problems. More recently, Zook et al. (2015)
adapted MCTS such that it simulates different skilled humans
for games enabling faster gameplay data collection to auto-
mate game design process. We refer the reader to the survey
on MCTS [Browne et al., 2012].

MCTS proceeds in four phases of selection, expansion,
rollout, and backpropagation. Each node in the tree repre-
sents a complete state of the domain. Each link in the tree rep-
resents one possible action from the set of valid actions in the
current state, leading to a child node representing the result-
ing state after applying that action. The root of the tree is the
initial state, which is the initial configuration of the Sokoban
puzzle board including the agent location. The MCTS algo-
rithm proceeds by repeatedly adding one node at a time to the
current tree. Given that actions from the root to the expanded
node is unlikely to find a complete solution, i.e. a Sokoban
puzzle for our purposes, MCTS uses random actions, a.k.a.
rollouts. Then the full action sequence, which results in a can-
didate puzzle for our domain, obtained from both tree actions
and random actions is evaluated. For each potential action,
we keep track of how many times we have tried that action,
and what the average evaluation score was.

Exploration vs. Exploitation Dilemma
Choosing which child node to expand (i.e., choosing which
action to take) becomes an exploration/exploitation problem.
We want to primarily choose actions that had good scores,
but we also need to explore other possible actions in case the
observed empirical average scores don’t represent the true
reward mean of that action. This exploration/exploitation
dilemma has been well studied in other areas.

Upper Confidence Bounds (UCB) [Auer et al., 2002]
is a selection algorithm that seeks to balance the explo-
ration/exploitation dilemma. Using UCB with MCTS is
also referred to as Upper Confidence bounds applied to
Trees (UCT). Applied to our framework, each parent node
p chooses its child s with the largest UCB(s) value accord-
ing to Eqn. 1. Here,w(.) denotes the average evaluation score
obtained by Eqn. 2, π̂s is the parent’s updated policy that in-

cludes child node s, pv is visit count of parent node p, and
sv is visit count of child node s respectively. The value of
C determines the rate of exploration, where smaller C im-
plies less exploration. C =

√
2 is necessary for asymptotic

convergence of MCTS [Kocsis and Szepesvári, 2006].

UCB(s) = w(π̂s) + C ×
√

ln pv
sv

(1)

If a node with at least one unexplored child is reached (sv =
0), a new node is created for one of the unexplored actions.
After the rollout and back-propagation steps, the selection
step is restarted from the root again. This way, the tree can
grow in an uneven manner, biased towards better solutions.

Variations in Selection Methods. There are numerous other
selection algorithms that can be integrated to MCTS. In this
work, as a baseline, we employed UCB selection algorithm.
However, considering a possible relationship between the
variance of tree nodes and agent movement on the board,
we experimented with UCB-Tuned [Auer et al., 2002], and
UCB-V [Audibert et al., 2007] for Sokoban puzzle genera-
tion using our evaluation function shown in Eqn. 2.

UCB-Tuned and UCB-V both employ the empirical vari-
ance of nodes based on the rewards obtained from rollouts
with the intuition that nodes with high variance need more ex-
ploration to better approximate their true reward mean. UCB-
Tuned purely replaces the exploration constant of the UCB
algorithm with an upper bound on the variance of nodes, and
hence requires no tuning, whereas UCB-V has two additional
parameters to control the rate of exploration.

3 Approach Overview
One of the challenges for generating Sokoban puzzles is
ensuring solvability of the generated levels. Since solving
Sokoban has been shown to be PSPACE-complete, directly
checking whether a solution exists for a candidate puzzle be-
comes intractable with increasing puzzle size. To overcome
this challenge, we exploit the fact that a puzzle can be gener-
ated through simulated gameplay itself.

To do so, we decompose the puzzle generation problem
into two phases: puzzle initialization and puzzle shuffling.
Puzzle initialization refers to assigning the box start locations,
empty tiles, and obstacle tiles. Puzzle shuffling consists of
performing sequences of Move agent actions (listed in sec-
tion 3.1) to determine goal locations. In a forward fashion, as
the agent moves around during the shuffling phase, it pushes
boxes to different locations. The final snapshot of the board
after shuffling defines goal locations for boxes.

We apply MCTS by formulating the puzzle creation prob-
lem as an optimization problem. As discussed above, the
search tree is structured so that the game can be generated by
simulated gameplay. The search is conducted over puzzle ini-
tializations and valid puzzle shuffles. Because puzzle shuffles
are conducted via a simulation of the Sokoban game rules,
invalid paths are never generated. In this way our method is
guaranteed to generate only solvable levels.

The main reasons for using MCTS for Sokoban puzzle gen-
eration is its success in problems with large branching factors
and its anytime property. MCTS has been applied to many



problems with large search spaces [Browne et al., 2012]. This
is also the case for Sokoban puzzles as the branching factor is
in the order of O(mn) for an m× n puzzle.

Anytime algorithms return a valid solution (given a solu-
tion is found) even if it is interrupted at any time. Given that
our problem formulation is completely deterministic, MCTS
can store the best found puzzle after rollouts during the search
and optionally halt the search with some quality threshold.
This behavior also enables us to create many puzzle levels
from a single MCTS run with varying increasing scores.

3.1 Action set

Our search tree starts with a board fully tiled with obstacles,
except for an agent which is assumed to start at the center of
the board. At any node, the following actions are possible in
the search tree:

1. Delete obstacles: Initially, only the obstacle tiles sur-
rounding the agent are available for deletion. Once there
is an empty tile, its surrounding obstacle tiles can also be
turned into an empty tile (this progressive obstacle dele-
tion prevents boards from containing unreachable hole
shaped regions).

2. Place boxes: A box may be placed in any empty tile.

3. Freeze level: This action takes a snapshot of the board
and saves it as the start configuration of the board.

4. Move agent: This action moves the agent on game board.
The agent cannot move diagonally. This action provides
the shuffling mechanism of the initialized puzzle where
the boxes are pushed around to determine box goal po-
sitions.

5. Evaluate level: This action is the terminal action for any
action chain; it saves the shuffled board as the solved
configuration of the puzzle (i.e. current box locations
are saved as goal locations).

This action set separates the creation of initial puzzle con-
figurations (actions taken until the level is frozen ) from puz-
zle shuffling (agent movements to create goal positions). Be-
fore move actions are created as tree nodes during MCTS
simulations, the agent moves randomly during rollouts. As
search is deepened, agent moves become more non-random.

Once Evaluate level action is chosen, before we apply our
evaluation function to the puzzle, we apply a simple post-
processing to the board. We turn all boxes that are placed
to the board but never pushed by the agent into obstacles as
this doesn’t violate any agent movement actions. By applying
evaluation function after post-processing, we make sure our
heuristic metrics’ values are correctly computed.

The proposed action set has several key properties which
make it well suited for MCTS-based puzzle generation. In
contrast to our approach, interleaving puzzle creation and
agent movement requires the MCTS method to re-simulate
all actions from the root to ensure valid action sequences,
which would render the problem much more computationally
expensive and MCTS less efficient.

3.2 Evaluation Function
MCTS requires an evaluation function to optimize over dur-
ing the search. For game playing AI, evaluation functions
typically map to 0 for loss, 0.5 for tie, and 1 for winning
sequence of actions. For Sokoban puzzle generation, this is
not directly applicable as we do not have winning and los-
ing states. Instead, we propose to use a combination of two
metrics, i.e. terrain and congestion, to generate interesting
Sokoban levels. Our approach seeks to maximize the geo-
metric mean of these two metrics as shown in Eqn. 2. This
provides a good balance between these two metrics without
allowing either term dominate. Parameter k is employed to
normalize scores to the range of 0 to 1.

f(P ) =

√
Terrain× Congestion

k
(2)

These two components of our evaluation function are in-
tended to guide the search towards boards that have congested
landscapes with more complex box interactions.

Congestion Metric
The motivation for the congestion metric is to encourage puz-
zles that have some sort of congestion with respect to the
paths from boxes to their goals. The intuition is that overlaps
between box paths may encourage precedence constraints of
box pushes. We compute this by counting the number of
boxes, goals, and obstacles in between each box and its corre-
sponding goal. Formally, given an m× n Sokoban puzzle P ,
and given b boxes on the board, let bs denote the initial box
locations, and let bf denote the final box locations. For each
box bi, we create a minimum area rectangle ri with corners of
bsi and bfi . Within each rectangle ri, let si denote the number
of box locations, let gi denote the number of goal locations,
and let oi denote the number of obstacles. Then

Congestion =

b∑
i=1

(αsi + βgi + γoi). (3)

where α, β, and γ are scaling weights.

Terrain Metric
The value of Terrain term is computed by summing the
number of obstacle neighbors of all empty tiles. This is in-
tended to reward boards that have heterogeneous landscapes,
as boards having large clearings or obstacles only on the bor-
ders make for mostly uninteresting puzzles.

4 Results
In this section, we firstly present a comparison between dif-
ferent selection algorithms. Then, we report the anytime per-
formance of our algorithm. Lastly, we present a set of levels
generated by our approach.

4.1 Experimental Design
All experiments are performed on a laptop using a single core
of an Intel i7 2.2 GHz processor with 8GB memory. Search
time is set to 200 seconds for all results and levels reported in
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Figure 3: Our method works in an anytime fashion, improving the quality of generated puzzles over time. The red line corresponds to the
performance of UCB-V for 5x5 board generation over time. The first two levels, i.e. generated instantaneously by MCTS, are trivial to solve.
As time passes and the puzzle scores increase, more interesting puzzles (such as the last two shown above) are found. The anytime property
of MCTS proves to be useful as a single MCTS run can generate a variety of levels.

this work. Given the simple game mechanics of Sokoban puz-
zles, our algorithm on average can perform about 80K MCTS
simulations per second for 5x5 tile puzzles.

For our experiments, we set C =
√
2 for UCB which is

presented in Eqn. 1. For the two parameters involved with
UCB-V, we use those suggested in [Audibert et al., 2007].
For the congestion metric (Eqn. 3), we used the following
weights for all boards generated: α = 4, β = 4, and γ = 1.
The normalization constant of k = 200 is employed for all
experiments. We ran our experiments for 5 runs of vary-
ing random seeds across each board size generated (5x5 to
10x10). Boards were saved each time the algorithm encoun-
tered an improvement in the evaluation function.

4.2 Computational Performance
Our method was able to produce approximately 700 candi-
date puzzles (about 100 per board size) on a single processor
over a period of 6 hours. Because of the anytime nature of our
approach, non-trivial puzzles are generated within a few sec-
onds, and more interesting puzzles over the following minutes
(see Figure 3). The anytime behavior of our algorithm for dif-
ferent puzzle board sizes is depicted in Figure 4. A puzzle set
is shown in Figure 5.

We compare the results of different MCTS selection meth-
ods in Figure 6. While UCB-Tuned has been shown to outper-
form these selection algorithms for other applications [Perick
et al., 2012], our experiments reveal a slight advantage for
UCB-V. Although all selection methods perform statistically
similarly, UCB-V slightly outperforms other techniques con-
sistently across different tested board sizes.

Compared to other methods that are exponential in the
number of boxes, our method is a significant improvement
on the run time. Our algorithm is capable of quickly gener-
ating levels with a relatively large number of boxes. As can
be seen in Figure 5, puzzles with 8 boxes or more are found
within a few minute time span. Previous search-based meth-
ods may not be able to generate these puzzles in a reasonable
amount of time given the number of boxes and board size.
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Figure 4: Anytime behavior of MCTS algorithm for varying board
sizes is depicted; here each line corresponds to the average of the
best score found so far by UCB-V across 5 runs with different seeds,
grouped by the size of boards being generated. We have chosen
UCB-V for display as it outperformed other methods for our do-
main. MCTS quickly finds trivially solvable puzzles within a sec-
ond. Given more time, more interesting puzzles are discovered.
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evaluation function, leading to interesting box interactions in all the various sizes. Score value is computed by our evaluation function, and
time refers to how many seconds it takes for MCTS to generate the corresponding puzzle.
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Figure 6: Different MCTS selection algorithms are compared.
UCB-V slightly outperforms UCB and UCB-Tuned algorithms. All
algorithms were provided the same search budget. The results are
obtained by averaging 5 runs with different seeds.

4.3 Generated Levels
Our algorithm is capable of generating interesting levels of
varying board sizes. Figure 5 showcases some examples. Our
algorithm does not require any templates, generating the lev-
els from an initially obstacle-filled board. Figure 3 shows
how board quality evolves over time. Lower scoring boards
are quickly ignored as the search progresses towards more
interesting candidates. The leftmost board depicted in Fig-
ure 3, while only 5x5 tiles, presented a challenge for the au-
thors, taking over a minute to solve. As MCTS is a stochastic
search algorithm, we obtain different interesting boards when
we initialize with different random seeds.

5 Discussion
The difficulty of a Sokoban puzzle is not easily quantified
(even knowing the optimal solution would not make deter-
mining relative difficulty easy). Some properties of the scores
produced by our evaluation function are worth noting. In gen-
eral, higher scores led to higher congestion (more box path in-
teractions) and a larger number of required moves. This does
lead to more challenging and engaging puzzles as the score
values increase. However, there are other aspects of difficulty
that are not explicitly captured by our metrics. A level that
requires more moves than another doesn’t necessarily mean
it is more difficult to recognize the solution (e.g, having to
move 3 boxes 1 space each vs 10 boxes 1 space each). Ex-
amples exist in which a very challenging level has a much

lower score than a “busier” but otherwise menial one. Addi-
tionally, the box path interactions in our challenging puzzles
usually correspond to determining a small number key moves,
after which the puzzle is easily solved. In contrast, human de-
signed puzzles can require the player to move boxes carefully
together throughout the entire solution.

A key motivation of our work is the ability to use our gen-
erated levels for games that have puzzle mechanics as an inte-
gral part of gameplay. Here, the ability to generate the puzzles
behind these elements could make the entire game experience
different on every play through. Additionally, levels of vary-
ing difficulties could be generated to represent mini-games
corresponding to various skill levels. For example, one could
imagine the reskinning of Sokoban puzzles as a “hacking”
mini-game where the difficulty can be tuned to the desired
challenge based on contextual information.

The properties of our algorithm in particular make it well
suited to the aforementioned applications. Since the speed of
our method could allow new puzzle to be generated for every
instance, players could be prevented from searching for solu-
tions on game forums (if that property is desired). Addition-
ally, an evaluation metric that corresponds well to puzzle dif-
ficulty could allow the game to dynamically present puzzles
of various difficulty to the player based on their character’s
profile (e.g.“hacking skill”) or other contextual information.
Finally, the anytime nature of the algorithm allows for the
generation of multiple levels of varying difficulty in a single
run, which could be stored for later use in the game.

Our method has the potential to generalize to other puzzle
games or games of other genres containing analogous me-
chanics. First we must assert that the game to be generated
has some finite environment whose elements can be repre-
sented discretely. Then the initial phase of our method may be
applied simply by changing the action set to include actions
that manipulate the elements of the environment. In many
puzzle games, the game is won by manipulating the envi-
ronment through player actions such that the elements match
some goal state conditions. The efficiency of our method
comes from exploiting this property. To apply the second
phase of our method, one need simply change the action set
of the Sokoban agent to the action set available to the player



during game play. Given these and a simulation framework,
our method will generate solvable puzzles. Finally, an evalu-
ation function must be carefully designed to produce the de-
sired puzzle qualities. This is typically the most difficult part
of applying our method to new puzzle types. The evaluation
function needs to be specific to the game being generated,
and must balance between being efficient to compute but still
predictive of the desired difficulty of the puzzle.

6 Conclusion
In this work, we have proposed and implemented an
MCTS approach for the fast generation of Sokoban puzzles.
Our algorithm requires no human designed input, and is
guaranteed to produce solvable levels. We developed and
utilized heuristic evaluation function that separates trivial
and uninteresting levels from non-trivial ones, enabling the
generation of challenging puzzles. We have shown, with
examples, that our method can be used to generate puzzles of
varying sizes.

Limitations: While our method can be used as is to generate
interesting levels, there are areas in which the method could
potentially be improved. No structured evaluation of our
proposed metrics’ ability to select interesting levels has
been performed. While we have presented levels that were
challenging to us, we have not tested the validity of these
metrics statistically.

Future Work: We plan to pursue the extension and improve-
ment of this work in two main directions. One is to deepen
our knowledge of puzzle features that can be efficiently com-
puted and reused within the puzzle generation phase while
the other is improving the performance of the algorithm. To
validate our evaluation function, we plan to conduct a user
study to collect empirical annotations of level difficulty, as
well as other characteristics. Having humans assess our puz-
zles would allow the testing of how well our evaluation func-
tion corresponds to the puzzle characteristics as they are per-
ceived. To begin overcoming the challenge of better under-
standing puzzle difficulty, we must expand our notion of what
makes a puzzle engaging or challenging. This could poten-
tially be achieved by using machine learning methods to iden-
tify useful features on both human designed and generated
puzzles with annotated difficulty. To increase the scalabil-
ity and performance of our approach, we plan to parallelize
MCTS potentially with the use of GPUs.
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