
1 
 

  

 

MAKING OF 



2 
 

Content table 
1 Motivation ............................................................................................................................3 

2 Origin of the idea..................................................................................................................3 

3 Graphic art ...........................................................................................................................4 

3.1 Animations ...................................................................................................................6 

4 Music and sound ..................................................................................................................7 

5 Programming ........................................................................................................................8 

5.1 The CPCtelera engine ...................................................................................................8 

5.2 Special features ............................................................................................................9 

5.2.1 Double buffer .......................................................................................................9 

5.2.2 Hardware scroll ....................................................................................................9 

5.2.3 Vertical rupture ..................................................................................................10 

5.3 AI of enemies ..............................................................................................................10 

5.3.1 Sensors for proximity detection with walls.........................................................10 

5.3.2 Pathfinding .........................................................................................................10 

5.3.3 State machines ...................................................................................................10 

5.4 Working with scarce memory .....................................................................................12 

5.4.1 First solution .......................................................................................................13 

5.4.2 Reclaim even more space (and without trimming content) ...............................13 

5.5 Working with limited process capacity .......................................................................13 

5.6 Video system limitations ............................................................................................13 

5.7 Expansion of CPCTelera functionality .........................................................................14 

5.7.1 Drawing 4x8 maps ..............................................................................................14 

5.7.2 Drawing partial tiles ............................................................................................14 

5.7.3 Loading from disk in assembler ..........................................................................14 

5.7.4 Drawing text with sprites ....................................................................................14 

5.7.5 Playing back sound effects with Arkos Tracker 2 ................................................15 

6 Tools used ..........................................................................................................................15 

7 Conclusion ..........................................................................................................................16 

 

  



3 
 

1 Motivation  
We have always liked all kinds of video games and, moreover, despite the fact that nowadays 

technology allows us to create hyperrealistic graphics and increasingly sophisticated and 

complex games, we still like those that have made us have such good times since time 

immemorial, and which are the classics. For this reason, this project has been presented to us 

perhaps as the one we have enjoyed the most in the career.  

We are three students in the 4th year of the degree in Computer Science at the University of 

Alicante studying the specialization itinerary in advanced computing. This itinerary has several 

subjects, including a so-called Automatic Reasoning taught by Dr. Francisco José Gallego Durán.  

Francisco proposed to us as practice of the same one, to realize a video game in language 

assembler Z80, with the idea of competing in the CPCRetrodev of this year 2018. As good 

engineers, we were delighted with the challenge for two simple reasons: We love to play and 

develop video games, but especially because there was a month and a half left for the 

competition, we like challenges and this was not going to be trivial ;) 

 

2 Origin of the idea 
As we already know, Amstrad CPC is a platform for which there are many and varied games from 

its golden age back in the 80s and early 90s. But, in addition, lately it is increasing again its 

catalogue thanks to the new creations made by enthusiasts and professionals of the indie/retro 

scene. This makes it increasingly difficult to come up with a type of game that is no longer 

available on CPC. 

However, something that perhaps has been missed has always been a good dungeon crawler 

with top-down view of Zelda style or similar. So, inspired by similar action mechanics, and taking 

into account the technological limitations, we have made a game design that will certainly give 

hours of fun to the player. 

As for the theme is inspired rather in the movies of barbarians, with a touch of fantasy, where 

we can find everything from orcs to powerful sorcerers, through immortal beings and strange 

creatures that will do everything possible to prevent us from achieving our goal. 



4 
 

3 Graphic art 

 

For the development of graphic art, with the restrictions of Mode 0: 160x200 in 16 colors we 

have opted for sizes 8 x 16 for the characters and 8 x 8 for the items, except special cases such 

as when our hero attacks that happens to require a size of 16 x 16. 

We have designed 3 worlds with 3 different tilesets: Dungeon, cavern and palace developed in 

several maps of 22 x 20 tiles each. As you can see, the tilesets corresponding to the caverns and 

the palace are half the size of the dungeon, in the end 64Kb are few and you have to trim a little 

of all places. 

Dungeon: 

Used tileset  Result of one of the generated maps 

 

 

 
 

Something that is worth mentioning about this tileset is that, contrary to what happens in other 

similar 8-bit games, the tiles are designed so that the repetitions of these are not noticed, so 

that, for example, although there are repeated stones in the image, this cannot be appreciated 

at first sight. 



5 
 

 

Cavern: 

Used tileset Result of one of the generated maps 

 

 

 
 

 

Palace: 

Used tileset Result of one of the generated maps 

 

 

 
 

  



6 
 

3.1 Animations 
Most animations, consist of 4 frames that, in the case of the animation to run left or right, finally had to 

be done in 8 to get a smoother movement (see section "Video Limitations"). 

Animation tilesets for all characters 

(By order: Main hero, orc, skeleton, knight, magician, big slimer, and small slimer) 

 

 

Tilesets for the ítems 

Heart, key, chicken, coins, chest, potion.  

 

 

 

  



7 
 

4 Music and sound 
 

 

 
To develop music and sound effects we have used Arkos Tracker. For convenience we have 

chosen to use Arkos Tracker 1 for the music because for this version, CPCtelera provides an 

automatic converter in the compilation toolchain itself. For the effects we have used Arkos 

tracker 2 that, although it has forced us to adapt the files by hand, it allows us to separate player 

of effects from that of the music. The need for this will be seen later in the section "working with 

scarce memory". 

We have used a Solton MS60 keyboard to shape the melodies before writing them into the 

program. We have also designed most of the instruments that compose it, as well as the 

instruments for in-game sound effects. 

Challenges within this process include the difficulty we have encountered in shaping an 

instrument by trying to make it sound as close to what we have in mind with the adjustments 

the program offers. Although it is well documented, it is a process that requires experience and 

we were noticing this in the last ones we designed. In the first cases we have based ourselves 

on example instruments to which we have made modifications and later we have managed to 

create some of our own from scratch. 

As for challenges within the melody, they are infinite. In the end, composing is a world that 

requires very specific knowledge and qualities. Within our possibilities we have tried to carry 

out an interesting and catchy melody making the most of the 3 channels offered by the AY-3-

8912 which has the Amstrad CPC 464. 

Finally we have developed 10 different effects for the in-game experience: 

- Hero hits an enemy. 
- Hit from an enemy to the hero. 
- Death of the hero. 
- Death of an enemy. 
- Hero ends the game. 
- Sword strike. 
- Collect coins. 
- Collect chicken/heart/potion. 
- Collect key. 
- Wizard throws fireball. 



8 
 

5 Programming 
As we said at the beginning, the game is developed 100% in Z80 assembler. This has been the 

main factor responsible for the arduous and pronounced initial learning curve. However, as 

development progressed and thanks to the enormous amount of online help, we were able to 

pick up a pace and that allowed us to finish everything we had set out to do on time. 

As for information to develop for CPC, for those of you who are just starting out, we fully 

recommend the videos of the “Curso de ensamblador desde cero” that Fran Gallego has on 

youtube:  

https://www.youtube.com/watch?v=smwXc3vShZw&list=PLmxqg54iaXrijQi4-

J9IkAWDEguKRX9Dh 

Once we have finished at least the first two levels, practically everything we need to make a 

game like ours is in the videos corresponding to the courses of “Razonamiento Automático” and 

“Videojuegos I” of the University of Alicante, also taught by Fran Gallego and available on 

YouTube too: 

https://www.youtube.com/watch?v=Ojac4Y4sxF0&list=PLmxqg54iaXrjhvQy_GbzYdvURV4sKs0

CT 

https://www.youtube.com/watch?v=13JGNTWcNLA&list=PLmxqg54iaXrjA0wzZmc_HDeZxs-

vDwDFS 

https://www.youtube.com/watch?v=k5Z_qLLM6hw&list=PLmxqg54iaXrjtcWWbRjv1JEzjFAZqR

ywi 

 

5.1 The CPCtelera engine 
It would not have been possible to finish any of this in a month and a half without this powerful 

Amstrad library. 

CPCtelera allows to develop a game for CPC in C language or, if we prefer it, in assembler to have 

more control at low level and to be able to optimize to the maximum. 

It has all kinds of high performance routines to draw sprites, tiles maps, text, play sound and 

music, receive input (keyboard and joystick), various functions of memory management, 

compression, tape loading, and so on, as well as a toolchain that allows us to compile our entire 

game with a single order, automatically importing all the assets we use (images, sounds, tiles…). 

In our case we have used version 1.5 which is still under development, but which offers new 

features and substantially improves the performance of the previous version. 

 

 

 

  

https://www.youtube.com/watch?v=smwXc3vShZw&list=PLmxqg54iaXrijQi4-J9IkAWDEguKRX9Dh
https://www.youtube.com/watch?v=smwXc3vShZw&list=PLmxqg54iaXrijQi4-J9IkAWDEguKRX9Dh
https://www.youtube.com/watch?v=Ojac4Y4sxF0&list=PLmxqg54iaXrjhvQy_GbzYdvURV4sKs0CT
https://www.youtube.com/watch?v=Ojac4Y4sxF0&list=PLmxqg54iaXrjhvQy_GbzYdvURV4sKs0CT
https://www.youtube.com/watch?v=13JGNTWcNLA&list=PLmxqg54iaXrjA0wzZmc_HDeZxs-vDwDFS
https://www.youtube.com/watch?v=13JGNTWcNLA&list=PLmxqg54iaXrjA0wzZmc_HDeZxs-vDwDFS
https://www.youtube.com/watch?v=k5Z_qLLM6hw&list=PLmxqg54iaXrjtcWWbRjv1JEzjFAZqRywi
https://www.youtube.com/watch?v=k5Z_qLLM6hw&list=PLmxqg54iaXrjtcWWbRjv1JEzjFAZqRywi


9 
 

5.2 Special features 

5.2.1 Double buffer 
The graphics are sent to the screen via the CRTC chip of the Amstrad. This chip does this every 

1/50th of a second by sweeping the entire screen from top to bottom. 

To move a character around the screen, in each frame the first step is to erase the previous 

graphic and then draw it in the new position. If we just do this, it can happen that the CRTC 

passes at the wrong time. For example, we can erase before the chip sweep arrives but when 

we go to draw the CRTC has already passed and even if we paint again, the result will not be 

visible until the next frame. 

This is what causes the famous flicker produced by working directly on the video memory. The 

first solution for this is not to paint at any time, but when the CRTC chip sends us the vertical 

synchronization signal, which indicates that it is currently reading at the top of the screen. 

This solves much of the problem but if we have many graphics we can pass another effect even 

worse and is that at the top the graphics are never seen, as the delayed always gains speed to 

the processor.  

The solution for this is to use double buffer. This technique consists of having two video buffers. 

One will be the front buffer (or currently visible buffer) and the other the back buffer (or hidden 

buffer). 

The front buffer will be what we see on screen but we will always draw in the back buffer and 

when we have finished the graphics tasks we will tell the CRTC chip to exchange the pointers of 

these two buffers to show what we just modified. At this moment what was the front buffer 

becomes backbuffer, and it will be in this one where we will prepare the next frame while the 

current one is shown. This will be repeated in a loop and, as a result, the flickers and sprites that 

disappear will never be a problem again, at the expense of a large amount of RAM used. 

5.2.2 Hardware scroll 
As we have seen in the previous section, the CRTC chip allows us to modify the pointer that 

indicates the memory position that we want to use as video memory. This in Amstrad can be 

used to make a hardware scroll.  

If we increase the position of the pointer in two bytes (due to hardware limitations we can only 

move two by two), the effect will be that the whole screen will move 4 pixels (being in 0 mode) 

to the left. And if we reduce its position in two bytes, we will do the same effect but to the right. 

Vertical movement is achieved by varying the pointer this time +80 bytes to move up or -80 

bytes to move down. 

Of course, it's not enough to just move the pointer. Besides this we must paint the new row or 

column of tiles to make the scroll effect. 

 

  



10 
 

 

5.2.3 Vertical rupture 
Besides changing the video pointer, the CRTC chip allows us to do many more things. In our case 

we have used it to apply a mythical effect in Amstrad, known as vertical rupture.  

The objective of this effect is to divide the screen with an imaginary horizontal line where we 

can simultaneously show two video buffers, one in the upper half and another in the lower half. 

In fact, you could make more divisions and even have it painted on the edge of the screen making 

more area visible. The problem is that this would also increase the memory needed for the video.  

For our game we simply needed to make two zones: a big one at the top (176 pixels high) for 

the game scene and a smaller one at the bottom (24 pixels high) for the panel. 

The main problem with this effect is that, to achieve it, we must perform the buffer change 

operations at the exact moment and without skipping the process at any time since we started 

it for the first time, permanently invoking these routines in a perfectly synchronized way in each 

frame throughout the game. 

This may seem too complicated (and in fact it is not simple at first), but in Amstrad we have the 

advantage of having a system of interruptions that, preparing it conveniently allows us to assign 

a routine that will be executed at regular intervals and at predictable moments. Specifically, the 

CPC launches 6 interrupts at every 1/50th of a second. We can take advantage of this to make 

the buffer changes we are talking about since each one of these 6 interruptions will correspond 

to a moment in which the CRTC sweep is in a specific position on the screen. It is already our 

decision which one to wait for to make the division. 

5.3 AI of enemies  

5.3.1 Sensors for proximity detection with walls 
Enemies walk all over the mapping, but when they must follow a certain route and have a wall 

in front of them, they don't advance until they collide with it, but they implement an intelligence 

that makes them keep a certain margin with the walls. This is what anyone in the real world 

would do... and that is that in reality we don't bump into the walls when we walk... or at least 

not intentionally! 

Para ello, todos los enemigos tienen un sensor de proximidad. En este caso, se activan los 

estados correspondientes para modificar la dirección del enemigo en función de su destino. 

5.3.2 Pathfinding 
The basic routine of an enemy will be to walk randomly through the scenario until he sees the 

player. An enemy can't see through the walls, so we won't need a complex path search algorithm 

here because his target will be a visible point from his position. 

Once the enemy has located the player he will go after him as explained in the next section. 

5.3.3 State machines 
As for the intelligence of the enemies, it has been designed as a base a common behavior to all 

of them from which the necessary variations are added depending on the type of enemy. For 

this basic behaviour, a state machine has been created as shown in the following image: 



11 
 

 

As you can see, there are 5 base states, Think, Seek, Attack, Hit y Dead. 

- The Think state chooses a random direction taking into account that it can move in that 

direction, using a sensor that detects the proximity to the walls and that will be 

explained later. In addition to the direction also takes a random distance to walk trough. 

 

- The Seek state moves the enemy using the direction and distance chosen in the Think 

state. If during the movement it encounters a wall with the sensor, it returns to the 

Think state to choose another direction. This prevents enemies from continually 

colliding with the walls. On the other hand, if you detect the hero at less than 8 squares 

away, the Manhattan distance changes to Attack state. It is important to note that if the 

hero is less than 8 squares away, but there is a wall in front of him, he ignores the hero 

and maintains Seek state. Finally, once you have completed the distance chosen in the 

Think state, return to that state to choose another new path. 

 

- The Attack state follows the hero along the Manhattan road and, if he ever loses sight 

of the hero, he returns to the Think state. Also, check to see if he has collided with the 

hero. In that case, you put the hero's state in Hit and switch to Think state. 

 

- The Hit state displaces 3 tiles and decreases the life of the enemy. In case of being 

without life it would pass to the Dead state, otherwise it would pass to the Think state. 

 

- The Dead state only performs the death animation and remains permanently in that 

state. 

All enemies inherit the base behavior described above, but each one has some variations to get 

a different behavior. 

- The skeleton refines the Dead state by adding a 4-second counter that, when finished, 

returns to the Think state, meaning that it "resurrects" because it is a skeleton and 

cannot die. 

- The knight has no refinements in terms of states, but to get to reduce the speed we 

update his logic of states every 2 times, this generates a halving of speed compared to 

the rest of enemies. 



12 
 

- The wizard has a refinement of the Attack state which consists of a new machine of 

states within that state. The states of that new machine are Escape, Align and Throw. 

o The escape state is activated if the hero is less than 4 squares away and makes 

the magician escape from the hero by the axis that is less aligned from him. 

o The align state is activated if the hero is between 4 and 8 squares away and 

what it does is move the magician in the axis that is more aligned to align it 

with the hero either vertically or horizontally. This is to look for a shooting 

position towards the hero (as this enemy throws fireballs). 

o The throw state is activated if the hero is between 4 and 8 squares away and is 

aligned on one of the axes and what it does is throw a fireball in the direction 

of the hero.  

o Finally, if it is less than 2 squares away from the hero, the Attack base state is 

activated, as explained above. 

- The Slimer has the following changes: 

o In Dead state, instead of dying, create 3 smaller slugs, which in turn when you 

move to Dead state definitely die.  

o On the other hand, it has a Sticked state. This state is activated if you collide 

with the hero by reducing the speed (following the same technique as in the 

knight) and has a counter in which every second takes life of the hero. To exit 

the Sticked state the player must move left and right quickly. 

5.4 Working with scarce memory 
The Amstrad CPC464 for which this game has been designed has only 64Kb of RAM distributed 

by default as follows: 

This is a real problem if you want to make a game of these features with well varied graphics 

and multiple enemy types with differentiated logics. In our case, as we have already seen, we 

have 3 big tilesets from which a good number of maps is generated, the game has 3 phases, 5 

types of enemies + the main character, and 6 types of items. 

To all this, we need to add a rich graphics menu, including a colourful pre-game tutorial and a 

main theme of a minute and a half duration. 

In addition, we must take into account the code that moves all this and the necessary functions 

of the CPCtelera library that makes it possible. A priori it may seem unfeasible that all this will 

fit in 64Kb, and is that, given the level of detail of the graphics, not even the compression 

routines managed to reduce the space occupied in a sensitive way. 

But if all this still seems like a small problem, we still have to take into account that the game 

uses double buffer for the fluid and flicker-free rendering of the graphics. 

For those who don't know, the video memory of the Amstrad is part of the main RAM. To keep 

the graphics on screen, we must have 16Kb reserved from the 64Kb available, so we would have 

48Kb, but using double buffer we need 32Kb for video and surprise ... We only have 32Kb left 

for the game! 

If we talk about real numbers, our game actually occupies more than 45Kb, so a priori does not 

fit whole. 



13 
 

5.4.1 First solution 
The solution has been to load the menu in the double buffer area and, during this part of the 

program, only the video memory will be drawn directly (without double buffer). Once the game 

starts, the code and menu graphics will be overwritten with the back buffer. We are not going 

to go back to the main menu once the game has started, because in case we want to restart the 

game or continue from a saved point, there is an option to do so at the end of the game. 

This has given us a lot more space available but, even so, it hasn't been enough, because in the 

end, only the block of the game just surpasses the 32Kb we had. 

5.4.2 Reclaim even more space (and without trimming content) 
The maps of tiles that are shown are compressed and what is done at every moment is to 

decompress in a reserved zone the one that is going to be shown. 

Well, to save the space we lacked to enter the 32Kb what has been done is to use this area for 

the routines and functions of CPCtelera that were only used during the initialization of the 

system and the game (all those that are only used once). So, when the game starts, it reuses that 

area to decompress the maps, so this is implemented without memory cost. 

Finally the game has fit, but we only have 14 bytes left! ... so that the memory has been more 

than well used ;-) 

 

5.5 Working with limited process capacity 
The CPC has a Z80 processor that works at approximately 4Mhz this limits what can be done but, 

even so, as we already know many things can still be done.  

Our game manages to work at 50 fps with up to 9 entities moving on screen. This framerate is 

also not reduced when scrolling, since it has been implemented by hardware (as explained 

above). 

Sometimes, the number of entities in the scene can cause us to skip a frame. In this case, being 

synchronized with the monitor's retrazing, the result is that we go down directly to 25fps. 

However, this does not cause the movements to become slow in the game, but this situation is 

detected and increases in positions are automatically doubled to adjust the speed of the game 

to the current fps. 

This makes the speed of the game independent of the load it has to execute. 

 

5.6 Video system limitations 
The video mode chosen for the graphics has been mode 0 because, although it has less 

resolution gives us more colors (in total 16). In this mode, each byte of the video memory 

represents two pixels. This is a problem, because when we move a sprite one position 

horizontally, does not move one pixel but two. 

We wanted to polish this detail by getting it to move pixel by pixel at the cost of consuming more 

memory. 

To solve it, what we do is, for the animations of walking in horizontal of the characters, instead 

of using 4 frames like the others, we use 8. The 4 extra frames are exact copies of the previous 



14 
 

ones, only moved one pixel to the right. In this way, when we move a character, we alternate 

these duplicate frames so that, although the graphic moves two by two in memory, we perceive 

it as if the movement were one by one. 

 

5.7 Expansion of CPCTelera functionality 

5.7.1 Drawing 4x8 maps 
Version 1.5 of CPCtelera has for the first time a routine that draws tilemaps with 4x8 byte tiles 

(the previous one was limited to 2x4). With this function you can paint the mapping much faster 

as it requires much fewer calculations. 

However, it has one limitation and that is that, during the painting of each row, it disables the 

interruptions. This is a major problem for us, since our game uses a vertical rupture (explained 

above) that requires constant updating to maintain it, or else, the break will be desynchronized 

and the graphics will be seen spinning on the screen. 

To solve this, we have implemented our own routine to paint 4x8 tiles that, although it is 25% 

slower than CPCtelera does not interfere with interruptions. 

5.7.2 Drawing partial tiles 
Our scroll advances horizontally at a speed of 4 in 4 pixels. However, the tiles have a width of 8. 

When moving a scroll step (4 pixels), we need to paint a new column of tiles on the side of the 

screen, but being 8, they stand out from the screen and appear on the opposite side, which is 

an unwanted effect. 

The solution has been to create two new routines, which, from a tile of 8x8 pixels, one paints 

the left half and another in the right half. In this way, in each step of the scroll, we alternate calls 

to these two functions to form the tilemap in order which will appear of 4 in 4 pixels. 

5.7.3 Loading from disk in assembler 
CPCtelera has a function to load tape data from assembler, but this is not suitable for disk. 

Due to the memory layout explained above, we need to load the menu block by code and this is 

only possible once the program has started as it is necessary to disable the firmware beforehand. 

Therefore, we have also implemented a function to load from disk and thus, our game is 

compatible with the whole range of CPC 

5.7.4 Drawing text with sprites 
The text drawing function of CPCtelera uses the original typography of the ROM. However, in 0 

mode these letters are too big for our game and we also wanted a different typography with the 

possibility of having several simultaneous colors. 

For this reason we have also made a routine that, from a text string and a tileset with ASCII 

characters, writes on screen the corresponding text. The following image corresponds to the 

text tileset used in the game: 

 

 



15 
 

 

5.7.5 Playing back sound effects with Arkos Tracker 2 
Due to memory restrictions, the game includes the main theme of the music in the main menu, 

but could not enter an in-game music. In addition, only the player occupies 2Kb. 

This player can not be separated from the sound effects in the version of Arkos Tracker 1, so 

even though we were not going to use it, would still occupy 2Kb only for effects. 

However, Arkos Tracker 2 does allow to separate these two blocks, being only 500bytes what 

occupies the sound effects player. 

For this reason we have made a function that, following the same syntax of CPCtelera plays 

sounds using the Arkos Tracker 2 player. And in this way, we have music and effects during the 

menu, and only effects during the game with 2Kb of memory savings. 

However, the game does have short melodies made by editing the instruments, varying the pitch 

to create the notes. This has allowed us to include the melody of game over, and others that 

appear in certain situations. 

 

6 Tools used 
- CPCtelera (Game engine) 

- Gimp (Graphics desing) 

- Arkos Traker 1 (music) 

- Arkos Traker 2 (sound effects) 

- Ubuntu 18.10 

- Tiled (Map design) 

- Trello (work organization) 

- Github (version control) 

  



16 
 

 

7 Conclusion 
 

Once the work is finished and reflecting on the result, the satisfaction is very great. It is worth 

clarifying that when we talk about results we do not refer exclusively to what can be seen. 

For us the challenge was a great challenge, it was an ambitious project with a very tight time 

frame. We had to take hours from anywhere to get "finished" on time. Between quotation marks 

the word finish since we had to leave many ideas in the drawer as the project progressed, but 

we had to be realistic. We had a very close date when we needed a product ready for production 

and we couldn't afford not to. It's also true that none of the features we couldn't implement 

were considered indispensable, and they're 100% complete. 

Apart from the experience at the level of project development and teamwork, everything 

learned at the technical level has been most interesting. Working on such limited hardware has 

led us to optimize our byte code and invent all kinds of "tricks" in order to scratch a few bits or 

clock cycles in the weight routines. 

We don't know what destiny will give us, but it would be ugly to deny that experience has made 

us think about future projects for CPCRetrodev'19 and I think in short this says it all :) 


